簡易檢索 / 詳目顯示

研究生: 許恆瑄
Hsu, Heng-Hsuan
論文名稱: KLF10基因缺失加重高蔗糖飲食誘導之非酒精性脂肪肝並使用天然物逆轉肝臟損傷
Deletion of KLF10 Gene Aggravates Nonalcoholic Fatty Liver Disease in High Sucrose Diet and Liver Damage is Reversed by the Natural Products
指導教授: 陳容甄
Chen, Rong-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 103
中文關鍵詞: 非酒精性脂肪肝Krüppel-like factor 10 (KLF10)高蔗糖飲食肝臟纖維化天然物細胞自噬
外文關鍵詞: NAFLD, Krüppel-like factor 10 (KLF10), High Sucrose Diet, Fribrosis, Natural products, Autophagy
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非酒精性脂肪肝(Nonalcoholic fatty liver disease, NAFLD)是近幾年全球逐漸盛行的肝臟疾病,是基於過多的脂肪堆積在肝臟中造成,並與現代人日常高熱量、高糖飲食息息相關,不及時治療可能會造成纖維化、肝功能異常,甚至最終導致肝硬化、肝癌。Krüppel Like Factor 10 (KLF10)是一個會參與肝功能和疾病的重要晝夜規律的調節的轉錄因子,又稱為轉化生長因子(Transforming Growth Factor, TGF)早期誘導基因(TGF inducible early gene 1, TIEG1)能夠調節葡萄糖和脂質代謝、細胞生長和腫瘤生成等基因表達。然而,Klf10 是否會受到攝取糖分的影響去調節NAFLD仍不清楚。目前尚未有U.S. FDA認可的NAFLD治療藥物,並且近年來食物療法受到極大的關注,紫檀芪是一種從藍莓中提取的天然物,以及蟲草素是蟲草屬真菌中特有的成分,兩者在先前研究已知具有優秀的抗氧化及抗發炎能力,根據先前研究推測紫檀芪可能會誘導的氧化壓力的減少,因此紫檀芪對果糖誘導的肝臟脂質積累起到保護作用。本篇研究探討 Klf10 剔除後給予高蔗糖飲食 (High Sucrose Diet, HSD) 是否會產生加劇NAFLD的產生,而同時利用天然物的合併處理下是否能逆轉嚴重的肝臟損傷,並以體外細胞研究Klf10在NAFLD發展過程中的調控角色以及天然物治療的機制。
    本研究使用8週大的 C57BL/6 Wild type 以及 Klf10(-/-)基因剔除小鼠給予高蔗糖飼料並每天口服管餵不同劑量的紫檀芪以及蟲草素,持續8週,研究NAFLD的病程發展以及評估天然物治療效果。小鼠犧牲後採集血液、心臟、肝臟、脾臟、肺臟、胰臟和睪丸。檢測血清中的GOT、GPT、三酸甘油酯(TG)、膽固醇、葡萄糖的濃度,以及肝臟組織中三酸甘油酯(TG)、膽固醇的含量,並觀察全器官的組織H&E染色切片,以NAFLD Activity Score (NAS)量化評估n損傷程度,再透過Masson’s Trichrome和Oil Red O染色觀察肝臟組織的纖維化和脂質累積的產生。體外試驗使用人類肝臟細胞HepaRG,並利用KLF10 inhibitor抑制KLF10蛋白的功能表現,透過流式細胞儀、免疫螢光染色分析及西方墨點法去探討高濃度的果糖並共同暴露治療效果較佳的紫檀芪減緩肝細胞中發炎與細胞自噬發生的機制,以及Klf10基因在保護肝臟疾病發展的角色。
    結果顯示,高蔗糖飲食顯著增加了小鼠的體重和肝臟重量,並導致血清中的天門冬胺酸轉氨酶(GOT)、丙胺酸轉氨酶(GPT)、三酸甘油酯(TG)、總膽固醇(TCHO)和葡萄糖濃度升高。同時,肝臟組織出現脂肪變性、發炎反應和細胞氣球樣變化。然而,加入紫檀芪或蟲草素後,小鼠的體血清生化指標接近正常水平,肝臟病理變化明顯改善。紫檀芪和蟲草素的實驗結果相似,均顯示了對高糖飲食誘導的肝臟脂肪變性,兩天然物相比之下,紫檀芪的效果更為顯著,更顯示了多器官損傷的保護作用。體外實驗進一步證實了紫檀芪能有效逆轉高濃度果糖處理所引起的肝細胞脂質堆積和自噬作用,這些結果支持了在動物實驗的發現。
    綜合上述結果,本研究證實了Klf10基因剔除加劇了高糖誘導的脂肪肝和纖維化,紫檀芪和蟲草素在預防和治療高糖飲食誘導的脂肪肝的潛在保護效果,以紫檀芪的效果更為顯著。Klf10基因剔除小鼠中磷酸化SREBP-1c上調和脂質生成增加。紫檀芪透過活化AMPK誘導自噬從而減少了肝細胞中的脂肪堆積。這些結果表明,Klf10在脂質生成中起著關鍵作用,並且可能影響自噬作用以作為治療NAFLD的潛在靶點。

    Non-alcoholic fatty liver disease (NAFLD) can lead to fibrosis, liver failure, cirrhosis, and hepatocellular carcinoma. The global prevalence of NAFLD has sharply increased in recent years, affecting approximately 25% of the population and posing significant health risks. Krüppel-like factor 10 (KLF10) is a transcription factor that regulates genes involved in glucose and lipid metabolism, cell growth, and tumorigenesis. However, its role in NAFLD, particularly concerning sugar consumption and autophagy, remains unclear. Despite the absence of a U.S. FDA-approved treatment for NAFLD, natural products have gained attention for their antioxidant and anti-inflammatory properties. This study investigates the potential mechanism by which Klf10 knockout (KO) mice exacerbate NAFLD following high sucrose feeding and evaluates the therapeutic effects of pterostilbene and cordycepin. We conducted in vivo studies on 8-week-old B6 wild-type (WT) and Klf10 KO mice fed with either a control or high sucrose diet, supplemented or not with pterostilbene or cordycepin for 8 weeks. Additionally, in vitro studies using the HepaRG cell line aimed to elucidate the interplay between the Klf10 gene and pterostilbene. The results indicated increased severity of NAFLD in Klf10 KO mice, evidenced by elevated serum levels of GOT, GPT, and cholesterol, and exacerbated steatosis. Pterostilbene co-treatment showed better therapeutic potential compared to cordycepin. High fructose consumption induced liver lipogenesis and inhibited autophagy, whereas pterostilbene modulated autophagy via AMPK activation, leading to LC3 induction. These findings suggest that Klf10 deficiency aggravates sugar-triggered NAFLD, increasing liver steatosis and fibrosis. Elevated SREBP-1c levels drive lipogenesis, while pterostilbene demonstrates promising therapeutic actions.

    第一章、序論 1 第二章、文獻回顧 2 第一節、非酒精性脂肪肝 2 第二節、肝臟纖維化 3 第三節、現代飲食對於NAFLD的影響 3 第四節、糖類對NAFLD的影響 4 第五節、NAFLD的治療策略 6 5-1食物療法 6 5-1-1紫檀芪對於NAFLD的功效 7 5-1-2蟲草素對於NAFLD的功效 9 5-2基因療法 10 5-2-1 KLF10在NAFLD中調控角色 10 第六節、細胞自噬在非酒精性脂肪肝中的調控 13 (一) 實驗動物 16 (二) 細胞株 16 (三) 儀器 16 (四) 試劑與耗材 18 第二節、研究方法及步驟 22 (一) 動物實驗 22 (二) 細胞實驗 28 第五章、研究架構 34 第六章、實驗結果 36 第一節、動物模式 36 (一)高蔗糖飼料誘導之腹部超音波及肝臟檢體 36 (二) 高蔗糖飼料誘導並以紫檀芪治療之體重、血清及肝臟生化值變化 36 (三) 高蔗糖飼料誘導並以紫檀芪治療之肝臟損傷 37 (四) 高蔗糖飼料誘導並以蟲草素治療之體重、血清及肝臟生化值變化 38 (五) 高蔗糖飼料誘導並以蟲草素治療之肝臟損傷 38 (六) 高蔗糖飼料誘導並以紫檀芪治療之肝臟纖維化及脂肪堆積 39 (六) 高蔗糖飼料誘導並以紫檀芪治療之器官損傷 41 第二節、體外細胞模式 43 (一) 果糖及紫檀芪在HepaRG的細胞毒性 43 (二) 高果糖誘導脂肪累積 44 (三) 合併紫檀芪處理抑制高果糖所誘導脂肪累積 44 (四) 紫檀芪誘導細胞自噬以保護高果糖所導致的自噬失調 44 (五) 在正常HepaRG細胞中KLF10及其下游蛋白的表達量改變 46 第七章、討論 47 第八章、結論及建議 52 第九章、參考文獻 54 圖表 65 Fig. 1. The effect of HSD-feeding in wild type and Klf10 KO C57BL/6 mice. 65 Fig. 2. Body weight and liver weight induced by high sucrose diet and decreased with the combination of the pterostilbene. 66 Fig. 3. The biochemistry values in serum and liver tissue homogenates induced by high sucrose diet and decreased with the combination of the pterostilbene. 67 Fig. 4. Histopathological results and injury score of liver induced by high sucrose diet and decreased with the combination of the pterostilbene. 68 Fig. 5. Body weight and liver weight induced by high sucrose diet and decreased with the combination of the cordycepin. 70 Fig. 6. The biochemistry values in serum and liver tissue homogenates induced by high sucrose diet and decreased with the combination of the cordycepin. 71 Fig. 7. Histopathological results and injury score of liver induced by high sucrose diet and decreased with the combination of the cordycepin. 72 Fig. 8. Lipid accumulation and fibrosis of liver induced by high sucrose diet and decreased with the combination of the pterostilbene. 74 Fig. 9. Immunohistochemistry (IHC) results of liver induced by high sucrose diet and decreased with the combination of the pterostilbene. 76 Fig. 10. Kidney injury induced by high sucrose diet and decreased with the combination of the pterostilbene. 78 Fig. 11. Pancreas, spleen, testis, heart, and lung injury induced by high sucrose diet and decreased with the combination of the pterostilbene. 80 Fig. 12. The cell viability of the Fructose and pterostilbene treatment in HepaRG cells detected by MTT assay. 82 Fig. 13. The lipid accumulation analysis of lipogenesis pathway induced by fructose treatment in HepaRG cells. 83 Fig. 14. The lipid accumulation analysis of lipogenesis pathway induced by fructose treatment and reversed by pterostilbene treatment in HepaRG cells. 84 Fig. 15. The effects of autophagy after the combined treatment of fructose and pterostilbene. 87 Fig. 16. The KLF10 pathway analysis in HepaRG cells. 89 補充圖表 90 STable. 1. The nutrition facts of the feeding diet. 90

    Aydın, M. M., & Akçalı, K. C. (2018). Liver fibrosis. Turk J Gastroenterol, 29(1), 14-21. https://doi.org/10.5152/tjg.2018.17330
    Bechmann, L. P., Vetter, D., Ishida, J., Hannivoort, R. A., Lang, U. E., Kocabayoglu, P., Fiel, M. I., Muñoz, U., Patman, G. L., Ge, F., Yakar, S., Li, X., Agius, L., Lee, Y. M., Zhang, W., Hui, K. Y., Televantou, D., Schwartz, G. J., LeRoith, D., . . . Friedman, S. L. (2013). Post-transcriptional activation of PPAR alpha by KLF6 in hepatic steatosis. J Hepatol, 58(5), 1000-1006. https://doi.org/10.1016/j.jhep.2013.01.020
    Bedi, O., Srivastava, N., Parsad, D., & Krishan, P. (2021). Fatty acid synthase inhibition ameliorates diabetes induced liver injury in rodent experimental model. Eur J Pharmacol, 901, 174078. https://doi.org/10.1016/j.ejphar.2021.174078
    Buchan, L., St Aubin, C. R., Fisher, A. L., Hellings, A., Castro, M., Al-Nakkash, L., Broderick, T. L., & Plochocki, J. H. (2018). High-fat, high-sugar diet induces splenomegaly that is ameliorated with exercise and genistein treatment. BMC Res Notes, 11(1), 752. https://doi.org/10.1186/s13104-018-3862-z
    Carr, R. M., Oranu, A., & Khungar, V. (2016). Nonalcoholic Fatty Liver Disease: Pathophysiology and Management. Gastroenterol Clin North Am, 45(4), 639-652. https://doi.org/10.1016/j.gtc.2016.07.003
    Cassidy, S., & Syed, B. A. (2016). Nonalcoholic steatohepatitis (NASH) drugs market. Nat Rev Drug Discov, 15(11), 745-746. https://doi.org/10.1038/nrd.2016.188
    Chen, Q., Wang, T., Li, J., Wang, S., Qiu, F., Yu, H., Zhang, Y., & Wang, T. (2017). Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD). Nutrients, 9(2). https://doi.org/10.3390/nu9020096
    Chen, R. J., Lee, Y. H., Yeh, Y. L., Wu, W. S., Ho, C. T., Li, C. Y., Wang, B. J., & Wang, Y. J. (2017). Autophagy-inducing effect of pterostilbene: A prospective therapeutic/preventive option for skin diseases. J Food Drug Anal, 25(1), 125-133. https://doi.org/10.1016/j.jfda.2016.10.022
    Chen, Y. C., Chen, R. J., Peng, S. Y., Yu, W. C. Y., & Chang, V. H. (2021). Therapeutic Targeting of Nonalcoholic Fatty Liver Disease by Downregulating SREBP-1C Expression via AMPK-KLF10 Axis. Front Mol Biosci, 8, 751938. https://doi.org/10.3389/fmolb.2021.751938
    Cheng, Z., He, W., Zhou, X., Lv, Q., Xu, X., Yang, S., Zhao, C., & Guo, L. (2011). Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. Eur J Pharmacol, 664(1-3), 20-28. https://doi.org/10.1016/j.ejphar.2011.04.052
    Chimento, A., De Amicis, F., Sirianni, R., Sinicropi, M. S., Puoci, F., Casaburi, I., Saturnino, C., & Pezzi, V. (2019). Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int J Mol Sci, 20(6). https://doi.org/10.3390/ijms20061381
    Dewdney, B., Roberts, A., Qiao, L., George, J., & Hebbard, L. (2020). A Sweet Connection? Fructose's Role in Hepatocellular Carcinoma. Biomolecules, 10(4). https://doi.org/10.3390/biom10040496
    DiStefano, J. K. (2020). Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis. Cell Mol Life Sci, 77(11), 2079-2090. https://doi.org/10.1007/s00018-019-03390-0
    Eng, J. M., & Estall, J. L. (2021). Diet-Induced Models of Non-Alcoholic Fatty Liver Disease: Food for Thought on Sugar, Fat, and Cholesterol. Cells, 10(7). https://doi.org/10.3390/cells10071805
    Fan, X., Wang, L., Huang, J., Lv, H., Deng, X., & Ci, X. (2018). Pterostilbene Reduces Acetaminophen-Induced Liver Injury by Activating the Nrf2 Antioxidative Defense System via the AMPK/Akt/GSK3β Pathway. Cell Physiol Biochem, 49(5), 1943-1958. https://doi.org/10.1159/000493655
    Folias, A. E., Penaranda, C., Su, A. L., Bluestone, J. A., & Hebrok, M. (2014). Aberrant innate immune activation following tissue injury impairs pancreatic regeneration. PLoS One, 9(7), e102125. https://doi.org/10.1371/journal.pone.0102125
    Geidl-Flueck, B., Hochuli, M., Németh, Á., Eberl, A., Derron, N., Köfeler, H. C., Tappy, L., Berneis, K., Spinas, G. A., & Gerber, P. A. (2021). Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J Hepatol, 75(1), 46-54. https://doi.org/10.1016/j.jhep.2021.02.027
    Gluchowski, N. L., Gabriel, K. R., Chitraju, C., Bronson, R. T., Mejhert, N., Boland, S., Wang, K., Lai, Z. W., Farese, R. V., Jr., & Walther, T. C. (2019). Hepatocyte Deletion of Triglyceride-Synthesis Enzyme Acyl CoA: Diacylglycerol Acyltransferase 2 Reduces Steatosis Without Increasing Inflammation or Fibrosis in Mice. Hepatology, 70(6), 1972-1985. https://doi.org/10.1002/hep.30765
    Guillaumond, F., Gréchez-Cassiau, A., Subramaniam, M., Brangolo, S., Peteri-Brünback, B., Staels, B., Fiévet, C., Spelsberg, T. C., Delaunay, F., & Teboul, M. (2010). Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Mol Cell Biol, 30(12), 3059-3070. https://doi.org/10.1128/mcb.01141-09
    Haller, S., Pellegrini, G., Vermeulen, C., Van der Meulen, N., Köster, U., Bernhardt, P., Schibli, R., & Müller, C. (2016). Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of (161)Tb-folate and (177)Lu-folate. EJNMMI Research, 6(1), 13. https://doi.org/10.1186/s13550-016-0171-1
    Haller, S., Pellegrini, G., Vermeulen, C., van der Meulen, N. P., Köster, U., Bernhardt, P., Schibli, R., & Müller, C. (2016). Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of (161)Tb-folate and (177)Lu-folate. EJNMMI Res, 6(1), 13. https://doi.org/10.1186/s13550-016-0171-1
    Hu, Y., He, W., Huang, Y., Xiang, H., Guo, J., Che, Y., Cheng, X., Hu, F., Hu, M., Ma, T., Yu, J., Tian, H., Tian, S., Ji, Y. X., Zhang, P., She, Z. G., Zhang, X. J., Huang, Z., Yang, J., & Li, H. (2021). Fatty Acid Synthase-Suppressor Screening Identifies Sorting Nexin 8 as a Therapeutic Target for NAFLD. Hepatology, 74(5), 2508-2525. https://doi.org/10.1002/hep.32045
    Iizuka, K., Takeda, J., & Horikawa, Y. (2011). Krüppel-like factor-10 is directly regulated by carbohydrate response element-binding protein in rat primary hepatocytes. Biochem Biophys Res Commun, 412(4), 638-643. https://doi.org/10.1016/j.bbrc.2011.08.016
    Kapetanovic, I. M., Muzzio, M., Huang, Z., Thompson, T. N., & McCormick, D. L. (2011). Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol, 68(3), 593-601. https://doi.org/10.1007/s00280-010-1525-4
    Kim, H. G., Shrestha, B., Lim, S. Y., Yoon, D. H., Chang, W. C., Shin, D. J., Han, S. K., Park, S. M., Park, J. H., Park, H. I., Sung, J. M., Jang, Y., Chung, N., Hwang, K. C., & Kim, T. W. (2006). Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol, 545(2-3), 192-199. https://doi.org/10.1016/j.ejphar.2006.06.047
    Kim, J. K., Lee, K. S., Chang, H. Y., Lee, W. K., & Lee, J. I. (2014). Progression of diet induced nonalcoholic steatohepatitis is accompanied by increased expression of Kruppel-like-factor 10 in mice. J Transl Med, 12, 186. https://doi.org/10.1186/1479-5876-12-186
    Kleiner, D. E., Brunt, E. M., Van Natta, M., Behling, C., Contos, M. J., Cummings, O. W., Ferrell, L. D., Liu, Y. C., Torbenson, M. S., Unalp-Arida, A., Yeh, M., McCullough, A. J., & Sanyal, A. J. (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, 41(6), 1313-1321. https://doi.org/10.1002/hep.20701
    Klionsky, D. J., Petroni, G., Amaravadi, R. K., Baehrecke, E. H., Ballabio, A., Boya, P., Bravo-San Pedro, J. M., Cadwell, K., Cecconi, F., Choi, A. M. K., Choi, M. E., Chu, C. T., Codogno, P., Colombo, M. I., Cuervo, A. M., Deretic, V., Dikic, I., Elazar, Z., Eskelinen, E. L., . . . Pietrocola, F. (2021). Autophagy in major human diseases. Embo j, 40(19), e108863. https://doi.org/10.15252/embj.2021108863
    Konerman, M. A., Jones, J. C., & Harrison, S. A. (2018). Pharmacotherapy for NASH: Current and emerging. J Hepatol, 68(2), 362-375. https://doi.org/10.1016/j.jhep.2017.10.015
    Lan, T., Yu, Y., Zhang, J., Li, H., Weng, Q., Jiang, S., Tian, S., Xu, T., Hu, S., Yang, G., Zhang, Y., Wang, W., Wang, L., Zhu, Q., Rong, X., & Guo, J. (2021). Cordycepin Ameliorates Nonalcoholic Steatohepatitis by Activation of the AMP-Activated Protein Kinase Signaling Pathway. Hepatology, 74(2), 686-703. https://doi.org/10.1002/hep.31749
    Lavallard, V. J., & Gual, P. (2014). Autophagy and non-alcoholic fatty liver disease. Biomed Res Int, 2014, 120179. https://doi.org/10.1155/2014/120179
    León-Ramírez, Y. M., Sánchez, E. P., Pérez, A. C., Sánchez-Solís, C. N., Rodríguez-Antolín, J., & Nicolás-Toledo, L. (2023). Dietary intervention in adult rats exposed to a high-sugar diet early in life permanently impairs sperm quality. Ann Endocrinol (Paris), 84(6), 779-789. https://doi.org/10.1016/j.ando.2023.06.002
    Leclère, P. S., Rousseau, D., Patouraux, S., Guérin, S., Bonnafous, S., Gréchez-Cassiau, A., Ruberto, A. A., Luci, C., Subramaniam, M., Tran, A., Delaunay, F., Gual, P., & Teboul, M. (2020). MCD diet-induced steatohepatitis generates a diurnal rhythm of associated biomarkers and worsens liver injury in Klf10 deficient mice. Sci Rep, 10(1), 12139. https://doi.org/10.1038/s41598-020-69085-w
    Lee, J., Oh, A. R., Lee, H. Y., Moon, Y. A., Lee, H. J., & Cha, J. Y. (2020). Deletion of KLF10 Leads to Stress-Induced Liver Fibrosis upon High Sucrose Feeding. Int J Mol Sci, 22(1). https://doi.org/10.3390/ijms22010331
    Li, S., Dou, X., Ning, H., Song, Q., Wei, W., Zhang, X., Shen, C., Li, J., Sun, C., & Song, Z. (2017). Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology, 66(3), 936-952. https://doi.org/10.1002/hep.29229
    Liu, P., Tang, W., Xiang, K., & Li, G. (2023). Pterostilbene in the treatment of inflammatory and oncological diseases. Front Pharmacol, 14, 1323377. https://doi.org/10.3389/fphar.2023.1323377
    Luo, H. Y., Zhu, J. Y., Chen, M., Mu, W. J., & Guo, L. (2023). Krüppel-like factor 10 (KLF10) as a critical signaling mediator: Versatile functions in physiological and pathophysiological processes. Genes Dis, 10(3), 915-930. https://doi.org/10.1016/j.gendis.2022.06.005
    Luo, Y., & Chen, C. (2021). The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci, 112(6), 2097-2117. https://doi.org/10.1111/cas.14910
    Ma, X., McKeen, T., Zhang, J., & Ding, W. X. (2020). Role and Mechanisms of Mitophagy in Liver Diseases. Cells, 9(4). https://doi.org/10.3390/cells9040837
    Mantovani, A., & Dalbeni, A. (2021). Treatments for NAFLD: State of Art. Int J Mol Sci, 22(5). https://doi.org/10.3390/ijms22052350
    Mastoridou, E. M., Goussia, A. C., Kanavaros, P., & Charchanti, A. V. (2023). Involvement of Lipophagy and Chaperone-Mediated Autophagy in the Pathogenesis of Non-Alcoholic Fatty Liver Disease by Regulation of Lipid Droplets. Int J Mol Sci, 24(21). https://doi.org/10.3390/ijms242115891
    McCormack, D., & McFadden, D. (2013). A review of pterostilbene antioxidant activity and disease modification. Oxid Med Cell Longev, 2013, 575482. https://doi.org/10.1155/2013/575482
    Márquez Álvarez, C. M., Gómez-Crisóstomo, N. P., De la Cruz-Hernández, E. N., El-Hafidi, M., Pedraza-Chaverri, J., Medina-Campos, O. N., & Martínez-Abundis, E. (2024). Chronic consumption of imbalance diets high in sucrose or fat induces abdominal obesity with different pattern of metabolic disturbances and lost in Langerhans cells population. Life Sci, 336, 122305. https://doi.org/10.1016/j.lfs.2023.122305
    Moon, Y. A. (2017). The SCAP/SREBP Pathway: A Mediator of Hepatic Steatosis. Endocrinol Metab (Seoul), 32(1), 6-10. https://doi.org/10.3803/EnM.2017.32.1.6
    Mridha, A. R., Wree, A., Robertson, A. A. B., Yeh, M. M., Johnson, C. D., Van Rooyen, D. M., Haczeyni, F., Teoh, N. C., Savard, C., Ioannou, G. N., Masters, S. L., Schroder, K., Cooper, M. A., Feldstein, A. E., & Farrell, G. C. (2017). NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol, 66(5), 1037-1046. https://doi.org/10.1016/j.jhep.2017.01.022
    Muriel, P., López-Sánchez, P., & Ramos-Tovar, E. (2021). Fructose and the Liver. Int J Mol Sci, 22(13). https://doi.org/10.3390/ijms22136969
    Pollak, N. M., Hoffman, M., Goldberg, I. J., & Drosatos, K. (2018). Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci, 3(1), 132-156. https://doi.org/10.1016/j.jacbts.2017.09.001
    Renne, R., Brix, A., Harkema, J., Herbert, R., Kittel, B., Lewis, D., March, T., Nagano, K., Pino, M., Rittinghausen, S., Rosenbruch, M., Tellier, P., & Wohrmann, T. (2009). Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicologic Pathology, 37, 5S-73S. https://doi.org/10.1177/0192623309353423
    Reyes-Gordillo, K., Shah, R., & Muriel, P. (2017). Oxidative Stress and Inflammation in Hepatic Diseases: Current and Future Therapy. Oxid Med Cell Longev, 2017, 3140673. https://doi.org/10.1155/2017/3140673
    Riche, D. M., McEwen, C. L., Riche, K. D., Sherman, J. J., Wofford, M. R., Deschamp, D., & Griswold, M. (2013). Analysis of safety from a human clinical trial with pterostilbene. J Toxicol, 2013, 463595. https://doi.org/10.1155/2013/463595
    Roehlen, N., Crouchet, E., & Baumert, T. F. (2020). Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells, 9(4). https://doi.org/10.3390/cells9040875
    Rong, S., Park, J., Kirsch, T., Yagita, H., Akiba, H., Boenisch, O., Haller, H., Najafian, N., & Habicht, A. (2011). The TIM-1:TIM-4 pathway enhances renal ischemia-reperfusion injury. Journal of the American Society of Nephrology, 22, 484-495.
    Sadowska, J., & Bruszkowska, M. (2017). Comparing the effects of sucrose and high-fructose corn syrup on lipid metabolism and the risk of cardiovascular disease in male rats. Acta Sci Pol Technol Aliment, 16(2), 231-240. https://doi.org/10.17306/j.Afs.0482
    Simons, N., Veeraiah, P., Simons, P., Schaper, N. C., Kooi, M. E., Schrauwen-Hinderling, V. B., Feskens, E. J. M., van der Ploeg, E., Van den Eynde, M. D. G., Schalkwijk, C. G., Stehouwer, C. D. A., & Brouwers, M. (2021). Effects of fructose restriction on liver steatosis (FRUITLESS); a double-blind randomized controlled trial. Am J Clin Nutr, 113(2), 391-400. https://doi.org/10.1093/ajcn/nqaa332
    Softic, S., Gupta, M. K., Wang, G. X., Fujisaka, S., O'Neill, B. T., Rao, T. N., Willoughby, J., Harbison, C., Fitzgerald, K., Ilkayeva, O., Newgard, C. B., Cohen, D. E., & Kahn, C. R. (2017). Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest, 127(11), 4059-4074. https://doi.org/10.1172/jci94585
    Tian, J., Jin, L., Liu, H., & Hua, Z. (2023). Stilbenes: a promising small molecule modulator for epigenetic regulation in human diseases. Front Pharmacol, 14, 1326682. https://doi.org/10.3389/fphar.2023.1326682
    Turchinovich, A., Baranova, A., Drapkina, O., & Tonevitsky, A. (2018). Cell-Free Circulating Nucleic Acids as Early Biomarkers for NAFLD and NAFLD-Associated Disorders. Front Physiol, 9, 1256. https://doi.org/10.3389/fphys.2018.01256
    van Laar, A., Grootaert, C., Van Nieuwerburgh, F., Deforce, D., Desmet, T., Beerens, K., & Van Camp, J. (2022). Metabolism and Health Effects of Rare Sugars in a CACO-2/HepG2 Coculture Model. Nutrients, 14(3). https://doi.org/10.3390/nu14030611
    Wang, X. J., & Malhi, H. (2018). Nonalcoholic Fatty Liver Disease. Ann Intern Med, 169(9), Itc65-itc80. https://doi.org/10.7326/aitc201811060
    Wang, Y. J., Chen, Y. Y., Hsiao, C. M., Pan, M. H., Wang, B. J., Chen, Y. C., Ho, C. T., Huang, K. C., & Chen, R. J. (2020). Induction of Autophagy by Pterostilbene Contributes to the Prevention of Renal Fibrosis via Attenuating NLRP3 Inflammasome Activation and Epithelial-Mesenchymal Transition. Front Cell Dev Biol, 8, 436. https://doi.org/10.3389/fcell.2020.00436
    Wree, A., Eguchi, A., McGeough, M. D., Pena, C. A., Johnson, C. D., Canbay, A., Hoffman, H. M., & Feldstein, A. E. (2014). NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology, 59(3), 898-910. https://doi.org/10.1002/hep.26592
    Wu, W. K. K., Zhang, L., & Chan, M. T. V. (2018). Autophagy, NAFLD and NAFLD-Related HCC. Adv Exp Med Biol, 1061, 127-138. https://doi.org/10.1007/978-981-10-8684-7_10
    Yaseen, U., Hwang, S., Park, S., Kim, S. B., Lee, H. J., & Cha, J. Y. (2024). New Insights into the Role of KLF10 in Tissue Fibrosis. Int J Mol Sci, 25(2). https://doi.org/10.3390/ijms25021276
    Yoo, S. H., Nahm, J. H., Lee, W. K., Lee, H. W., Chang, H. Y., & Lee, J. I. (2023). Loss of Krüppel-like factor-10 facilitates the development of chemical-induced liver cancer in mice. Mol Med, 29(1), 156. https://doi.org/10.1186/s10020-023-00751-1
    Younossi, Z. M., Zelber-Sagi, S., Henry, L., & Gerber, L. H. (2023). Lifestyle interventions in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol, 20(11), 708-722. https://doi.org/10.1038/s41575-023-00800-4
    Yu, S., Li, C., Ji, G., & Zhang, L. (2021). The Contribution of Dietary Fructose to Non-alcoholic Fatty Liver Disease. Front Pharmacol, 12, 783393. https://doi.org/10.3389/fphar.2021.783393
    Zhang, D., Wang, H., Liu, A., Wang, S., Xu, C., Lan, K., Xiang, W., Zhu, K., Xiao, Y., Fu, J., Jiang, R., Chen, W., & Ni, Y. (2023). The chronic consumption of dietary fructose promotes the gut Clostridium species imbalance and bile acid alterations in developing nonalcoholic fatty liver disease. J Nutr Biochem, 121, 109434. https://doi.org/10.1016/j.jnutbio.2023.109434
    Zhang, H., Chen, Q., Yang, M., Zhu, B., Cui, Y., Xue, Y., Gong, N., Cui, A., Wang, M., Shen, L., Zhang, S., Fang, F., & Chang, Y. (2013). Mouse KLF11 regulates hepatic lipid metabolism. J Hepatol, 58(4), 763-770. https://doi.org/10.1016/j.jhep.2012.11.024
    Zhou, T., Chang, L., Luo, Y., Zhou, Y., & Zhang, J. (2019). Mst1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy. Redox Biol, 21, 101120. https://doi.org/10.1016/j.redox.2019.101120
    劉乃瑄, 許瀞分, & 陳正裕. (2014). 非酒精性脂肪肝疾病的評估與治療 [The Assessment and Management of Non-Alcoholic Fatty Liver Disease]. 台灣家庭醫學雜誌, 24(2), 62-76. https://doi.org/10.3966/168232812014062402002
    衛生福利部. (2021). 110年我國人死因統計結果. 衛生福利部. https://www.mohw.gov.tw/cp-16-70314-1.html

    無法下載圖示 校內:2029-08-22公開
    校外:2029-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE