| 研究生: |
簡士堯 Chien, Shih-Yao |
|---|---|
| 論文名稱: |
應用分子模擬於矽材之吸附特性研究 Applying molecular simulation in adsorption characteristics of silica system |
| 指導教授: |
陳朝光
Chen, Cha’o-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 分子動力學 、巨正則蒙地卡羅 、矽材 、MCM-41 、吸附現象 |
| 外文關鍵詞: | molecular dynamics, grand canonical monte carlo, silica materials, MCM-41, adsorption phenomena |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用分子動力學模擬及巨正則蒙地卡羅模擬,探討CO2、N2和H2O在矽材上的吸附現象。
分子動力學中,建立單一奈米孔洞的silica模型,經由矽材與水分子系統的模擬,計算H2O的擴散係數、徑向分佈函數和相互作用能,討論H2O在矽奈米孔洞下的運動情形和特性,發現H2O會因為表面OH基的影響而拘束分子的擴散運動,使擴散係數下降,再將孔洞細分成INNER part 和 OUTER part,可發現OUTER part 接近表面的H2O擴散係數會比INNER part要來的更低許多。
巨正則蒙地卡羅中,建構了六角型規則排列的多孔性MCM-41,以Metropolis規則方法為篩選基礎進行模擬,計算吸附等溫線、吸附能量分佈和吸附密度圖,研究CO2、N2和H2O在MCM-41的吸附特徵與表現。模擬結果可知氣體分子吸附於MCM-41可歸類成三大模態,分別為在MCM-41表面上的【表面吸附(surface adsorption)】、吸附質分子上的【多層吸附(multilayer adsorption)】和鄰近於孔洞中心處【分子互相聚集(molecular self-aggregation)】。經吸附等溫線的趨勢分析,發現提高壓力會促使氣體分子易於附著在MCM-41上、環境溫度的提升反而造成氣體分子的脫附,而材料的孔洞半徑大小之影響也會造成氣體分子在MCM-41上的吸附量上有所差異。研究上能藉由吸附能量分佈圖來解釋吸附狀態,三種模態在不同條件下會有不同的表現。此外,本研究結果也發現H2O在MCM-41的吸附表徵與CO2和N2有極大的不同處,因為毛細現象的關係,壓力小範圍的變化和溫度控制會水分子產生巨大的吸附量。因此,在工程應用上介孔材料MCM-41對於H2O的吸附是相當具有可行性。
This research performs the molecular dynamics simulations and the grand canonical monte carlo simulations, discussing adsorption phenomena of CO2, N2 and H2O attached in silica materials.
In MD, a silica nano-pore is constructed for simulating the huge silica system. After a period of simulations time, adsorption properties of water molecules in nano-pore can be known by calculating diffusion coefficients, radial distribution functions and interaction energy. The motion of diffusion declines because of OH groups linked on silica surface. Diffusion coefficient of water near the surface is lower than diffusion coefficient of water around the pore center.
In GCMC, using Metropolis approach to simulate MCM-41 model which has hexagonal shape and regular arrangement of pore. Characteristics of CO2, N2 and H2O in MCM-41 can be studied by adsorption isotherms, adsorption energy distribution and adsorption density profiles. The results present that gas molecules are adsorbed in MCM-41, according to three main mechanisms, namely “surface adsorption” on the pore wall, “multilayer adsorption” on the adsorbed gas molecules, and “molecular self-aggregation” near the pore center. With analysis of tendency of adsorption isotherms, increasing pressure makes gas molecules attached on MCM-41 more easily, and high temperature is a preferable state for gas adsorption. Also, different pore radius of MCM-41 have a significant influence on adsorption loadings. Three mode of adsorption will have various performance in different environment condition. It can be told that adsorption status of CO2, N2 and H2O adsorbed in MCM-41 are extremely different by means of investigating energy distribution. The reason is a large amount of adsorption loadings will be achieved under pressure variation within a small range due to capillary condensation phenomena. In addition, the mesoporous silica of MCM-41 is found to be practicable for H2O adsorption in engineering application.
Abraham, F. F.; Koch, S. W.; Desai, R. C., Computer-simulation Dynamics of an Unstable Two-dimensional Fluid: Time-Dependent Morphology and Scaling, Physical Review Letters, 49, 923-926, 1982.
Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquid, Clarendon Press, Oxford, 1987.
Beck, J. S.; Vartuli, J. C.; Roth, W. J., A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates, Journal of the American Chemical Society, 114, 10834-10843, 1992.
Belmabkhout, Y.; Sayari, A., Effect of Pore Expansion and Amine Functionalization of Mesoporous Silica on CO2 Adsorption over a Wide Range of Conditions, Adsorption, 15, 318-328, 2009.
Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A., Adsorption of CO2-Containing Gas Mixtures over Amine-Bearing Pore-Expanded MCM-41 Silica: Application for Gas Purification, Industrial & Engineering Chemistry Research, 49(1), 359-365, 2010.
Boger, T.; Roesky, R.; Glaser, R.; Ernst, S.; Eigenberger, G.; Weitkamp, J., Influence of the Aluminum Content on the Adsorptive Properties of MCM-41, Microporous Materials, 8, 79-91, 1997.
Bourg, I. C.; Steefel, C. I., Molecular Dynamics Simulations of Water Structure and Diffusion in Silica Nanopores, The Journal of Physical Chemistry C, 116, 11556-11564, 2012.
Coasne, B.; Hung, F. R.; Pellenq, R. J. M.; Siperstein, F. R.; Gubbins, K. E., Adsorption of Sample Gases in MCM-41 Materials: The Role of Surface Roughness, Langmuir, 22, 194 -202, 2006.
Crupi, V.; Longo, F.; Majolino, D.; Venuti, V., Raman Spectroscopy: Probing Dynamics of Water Molecules Confined in Nanoporous Silica Glasses, The European Physical Journal Special Topics, 141, 61-64, 2007.
Ferdi, S.; Kenneth, S. W. S.; Jens, W., Handbook of Porous Solids, Wiley-Vch, 3, 1547, 2002.
Fogarty, J. C.; Aktulga, Hasan Metin; Grama, Ananth Y.; Duin, Adri C. T. van; Pandit, Sagar A., A Reactive Molecular Dynamics Simulation of the Silica-Water Interface, The Journal of Chemical Physics, 132, 174704, 2010.
Frenkel, D.; Smit, B., Understanding Molecular Simulation from Algorithms to Applications, Academic Press, 1996.
Gallo, P.; Rovere, M; Chen, S. H., Water Confined in MCM-41: A Mode Coupling Theory Analysis, Journal of Physics: Condensed Matter, 24, 064109-064113, 2012.
Garofalini, Stephen H., Molecular Dynamics Computer Simulations of Silica Surface Structure and Adsorption of Water Molecules, Journal of Non-Crystalline Solids, 120, 1-12, 1990.
Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, N.J., 1971.
Haile J. M., Molecular Dynamic Simulation: Elementary Methods, Wiley, New York, 1997.
He, Y. F.; Seaton, N. A., Experimental and Computer Simulation Studies of the Adsorption of Ethane, Carbon Dioxide, and their Binary Mixtures in MCM-41, Langmuir, 19, 10132-10138, 2003.
He, Y.; Seaton, N. A., Heats of Adsorption and Adsorption Heterogeneity for Methane, Ethane, and Carbon Dioxide in MCM-41, Langmuir, 22,1150-1155, 2006.
Ho, N. L.; Pellitero, J. P.; Porcheron, F.; Pellenq, R., Enhanced CO2 Solubility in Hybrid MCM-41: Molecular Simulations and Experiments, Langmuir, 27, 8187-8197, 2011.
Hoover, W. G., Canonical Dynamics Equilibrium Phase-Space Distribution, Physical Review A, 31, 1695-1697, 1985.
Huber, T. E.; Huber, C. A., Vibrational Spectroscopy of Porous Vycor Glass: Surface Hydroxyl Perturbations Upon Adsorption of Hydrogen, The Journal of Physical Chemistry, 94, 2505-2511, 1990.
Iler, R. K., The Chemistry of Silica, Wiley, New York, 1979.
Kerisit, S.; Liu, C. X., Molecular Simulation of the Diffusion of Uranyl Carbonate Species in Aqueous Solution, Geochimica et Cosmochimica Acta, 74, 4937-4952, 2010.
Koh, C. A.; Montanari, T.; Nooney, R. I.; Tahir, S. F.; Westacott, R. E. Experimental and Computer Simulation Studies of the Removal of Carbon Dioxide from Mixtures with Methane Using AlPO4-5 and MCM-41, Langmuir, 15, 6043-6049, 1999.
Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism, Nature, 359, 710-712, 1992.
Krynicki, K.; Green, C. D.; Sawyer, D. W., Pressure and Temperature Dependence of Self-Diffusion in Water, Faraday Discussions of the Chemical Society, 66, 199-208, 1978.
Lerbret, A.; Lelong, G.; Mason, P. E.; Saboungi, Marie-Louise; Brady, John W., Water Confined in Cylindrical Pores: A Molecular Dynamics Study, Food Biophysics, 6, 233-240, 2011.
Low, M. J. D.; Ramasubramanian, N., The Dehydration of Porous Glass, The Journal of Physical Chemistry, 71, 730-37, 1967.
Maddox, M. W.; Gubbins, K. E., Molecular Simulation of Fluid Adsorption in Buckytubes and MCM-41, International Journal of Thermophysics, 15, 1115-1123, 1994.
Maddox, M. W.; Olivier, J. P.; Gubbins, K. E. Characterization of MCM-41 Using Molecular Simulation: Heterogeneity Effects, Langmuir, 13, 1737 -1745, 1997.
Mark, P.; Nilsson, L., Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K, The Journal of Physical Chemistry A, 105, 9954-9960, 2001.
Mayo, S. L.; Olafson, B. D.; W. A. Goddard III, DREIDING: A Generic Force Field for Molecular Simulations, The Journal of Physical Chemistry, 94, 8897-8909, 1990.
Nosé, S., A Molecular-Dynamics Method for Simulations in the Canonical Ensemble, Molecular Physics, 52, 255-268, 1984a.
Nosé, S., A Unified Formulation of the Constant Temperature Molecular Dynamics Method, The Journal of Chemical Physics, 81, 511-519, 1984b.
Oumi, Y.; Takage, H.; Sumiya, S.; Mizuno, R.; Uozumi, T.; Sano, T., Novel Post-Synthesis Alumination Method for MCM-41 Using Trimethylaluminum, Microporous and Mesoporous Materials, 44, 267-274, 2001.
Puibasset, J.; Pellenq, R. J. M., Water Confined in Mesoporous Silica Glasses: Influence of Temperature on Adsorption/Desorption Hysteresis Loop and Fluid Structure, The European Physical Journal Special Topics, 141, 41-44, 2007.
Rafii-Tabar H., Modeling the Nano-Scale Phenomena in Condensed Matter Physics via Computer-Based Numerical Experiment, Physics Reports, 325, 239-310, 2000.
Rapaport D. C., The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
Ravikovitch, P. I.; Domhnaill, S. C. Ó.; Neimark, A. V.; Schüth, F.; Unger, K. K., Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41, Langmuir, 11, 4765-4772, 1995.
Satoh, A., Introduction to Practice of Molecular Simulation: Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann, Dissipative Particle Dynamics, Amsterdam; Boston: Elsevier, 2011.
Schneider, T.; Stoll, E., Molecular-Dynamics Study of a Three-Dimensional One-component Model for Distortive Phase Transitions, Physical Review B, 17, 1302-1322, 1978a.
Schneider, T.; Stoll, E., Molecular-Dynamics Study of Second Sound, Physical Review B, 18, 6468-6482, 1978b.
Sun, H., COMPASS: An Ab Initio Forcefield Optimized for Condensed-Phase Application-Overview with Details on Alkane and Benzene Compounds, The Journal of Physical Chemistry, B102, 7338-7364, 1998.
Toukmaji, A. Y.; Board Jr., J. A., Ewald Summation Techniques in Perspective: A Survey, Computer Physics Communication, 95, 73-92, 1996.
U.S. Energy Information Administration (EIA), International Energy Outlook, 2013.
Wallace, S.; Hench, L. L., Structural Analysis of Water Adsorbed in Silica Gel, Journal of Sol-Gel Science and Technology, 1, 153-168, 1994.
Wikipedia,http://zh.wikipedia.org/wiki/蒙地卡羅方法
Woodcock, L. V., Isothermal Molecular Dynamics Calculations for Liquid Salts, Chemical Physics Letters, 10, 257, 1971.
Wu, Y. J.; Tepper, H. L.; Voth, G. A., Flexible Simple Point-Charge Water Model with Improved Liquid-State Properties, The Journal of Chemical Physics, 124, 024503, 2006.
Xia, Z. Z.; Chen, C. J.; Kiplagat, J. K.; Wang, R. Z.; Hu,J. Q., Adsorption Equilibrium of Water on Silica Gel, Journal of Chemical & Engineering Data, 53, 2462-2465, 2008.
Yu, J.; Li, W.; Wang, Y. D.; Yu, Y. X., Molecular Simulation of MCM-41: Structural Properties and Adsorption of CO2, N2 and Flue Gas, Chemical Engineering Journal, 220, 264-275, 2013.
Zhu,Y. J.; Zhou, J. H.; Hu, J.; Liu, H. L., The Effect of Grafted Amine Group on the Adsorption of CO2 in MCM-41: A Molecular Simulation, Catalysis Today, 194, 53-59, 2012.
Zhuo, S. C.; Huang, Y. M.; Hu, J.; Liu, H. L.; Hu, Y.; Jiang, J. W., Computer Simulation for Adsorption of CO2, N2 and Flue Gas in a Mimetic MCM-41, The Journal of Physical Chemistry C, 112, 11295-11300, 2008.
能源查核與節能技術暨能管員推動節能交流研討會論文集,2007。
張勳承,應用分子動力學於合金團簇沉積製程之研究,國立成功大學機械工程學系,2010。
朱訓鵬,分子動力學與平行運算於奈米薄膜沉積模擬之應用,國立成功大學機械工程學系,2002。