| 研究生: |
巫啓豪 Wu, Chi-Hao |
|---|---|
| 論文名稱: |
馬斯洛需求層級理論為基之產品定位分析機制研發 Development of a Product Positioning Analysis Mechanism based on Maslow's Hierarchy of Needs Theory |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 共同指導教授: |
陳宗義
Chen, Tsung-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 意見探勘 、馬斯洛需求層級理論 、產品定位 、凝聚式階層分群演算法 、倒傳遞類神經網路 |
| 外文關鍵詞: | Opinion Mining, Maslow’s Hierarchy of Needs Theory, Product Positioning, Agglomerative Hierarchical Clustering, Back Propagation Neural Network |
| 相關次數: | 點閱:150 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
行銷為提供產品滿足消費者需求與慾望之過程,企業則藉由行銷活動創造顧客與留住顧客。而產品定位分析是企業擬定有效行銷策略的重要步驟之ㄧ,其目的為得知消費者對於產品之特徵的重視程度,使企業能夠塑造產品的鮮明個性或特色。現下,隨著各種網路媒體的蓬勃發展,消費者無不透過這些媒體分享其對產品的意見及使用心得等評論文章。這些文章往往透露出消費者對於產品特徵的重視及需求。本研究試圖以馬斯洛需求層級理論(Hierarchy of needs theory)為基礎,發展一個產品定位分析(product positioning)的機制,透過關聯法則(Association Rule)之觀念以及機器學習中凝聚式階層分群(Agglomerative Hierarchical Clustering, AHC)、倒傳遞類神經網路(Back-Propagation Neural Network, BPN)等方法分析網路媒體中消費者對於產品之評論,探勘出目標客群對於特定產品所重視的產品特徵及各特徵對應至馬斯洛需求理論之層級,以建立一消費者的產品馬斯洛模型。此模型將可提供企業審視產品在目標市場之定位,並作為產品改良或開發的決策支援。
This study develop a product positioning analysis mechanism based on Maslow's hierarchy of needs theory, so that enterprises can understand the level of needs in target audiences (TA) psychological dimension in low-cost and automated way. The main contributions of our paper are three fold: (1)We designs a product’s Maslow model that provides information of product positioning in target market to enterprises, so as to support refining product positioning strategies, improving features of products, and making decisions. (2)We propose a FOPE Algorithm which extend the method which proposed by Liu et al. (2013), which extracts features and opinions of product from online word-of-mouth articles (reviews) written in Chinese. (3) We propose an Aspect Induction Algorithm that summarized the product features which have similar meaning to a cluster called aspect by AHC (agglomerative hierarchical clustering). (4)We designs a Maslow levels evaluation method that uses Back-Propagation Neural Network (BPN) to map each product features which consumer emphasized to five levels of Maslow's hierarchy of needs. Based on these methods, we conduct an empirical study on smart phones and butter Shortcake and demonstrate the effectiveness of the proposed methods.
一、英文文獻:
Banati, H., & Bajaj, M. (2012). Promoting products online using firefly algorithm. Paper presented at the Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on.
Blackwell, R. D., Miniard, P. W., & Engel, J. F. (2006). Consumer behavior, 10. Aufl., Mason.
Cao, H. H., Jiang, J. H., Oh, L. B., Li, H., Liao, X. W., & Chen, Z. W. (2013). A Maslow's hierarchy of needs analysis of social networking services continuance. Journal of Service Management, 24(2), 170-190. doi: 10.1108/09564231311323953
Cheung, C. M., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461-470.
Cormack, R. M. (1971). A review of classification. Journal of the Royal Statistical Society. Series A (General), 321-367.
Drucker, P. F. (1995). People and performance: The best of Peter Drucker on management: Routledge.
Fang, L., Huang, M., & Zhu, X. (2013). Exploring weakly supervised latent sentiment explanations for aspect-level review analysis. Paper presented at the Proceedings of the 22nd ACM international conference on Conference on information & knowledge management.
Fife, E., & Pereira, F. (2008). Maslow’s Hierarchy of Needs and ICT: Challenges of End-User Adoption of Digital Life. JOURNAL OF THE INSTITUTE OF TELECOMMUNICATIONS PROFESSIONALS, 2, 23-28.
Gu, B., Tang, Q., & Whinston, A. B. (2013). The influence of online word-of-mouth on long tail formation. Decision Support Systems, 56, 474-481.
Jifeng, X., & Hanning, Z. (2009, 26-29 Nov. 2009). The analyzing on design model of modern Chinese furniture based on Maslow's hierarchy of needs. Paper presented at the Computer-Aided Industrial Design & Conceptual Design, 2009. CAID & CD 2009. IEEE 10th International Conference on.
Khan, F. H., Bashir, S., & Qamar, U. (2014). TOM: Twitter opinion mining framework using hybrid classification scheme. Decision Support Systems, 57(0), 245-257. doi: http://dx.doi.org/10.1016/j.dss.2013.09.004
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Paper presented at the IJCAI.
Kotler, P. J., & Armstrong, G. M. (2010). Principles of marketing: Pearson Education.
Lee, C.-W., Shih, C.-W., Day, M.-Y., Tsai, T.-H., Jiang, T.-J., Wu, C.-W., . . . Hsu, W.-L. (2005). ASQA: Academia sinica question answering system for NTCIR-5 CLQA. Paper presented at the NTCIR-5 Workshop, Tokyo, Japan.
Li, S.-T., & Tsai, F.-C. (2013). A fuzzy conceptualization model for text mining with application in opinion polarity classification. Knowledge-Based Systems, 39, 23-33.
Lin, C., & He, Y. (2009). Joint sentiment/topic model for sentiment analysis. Paper presented at the Proceedings of the 18th ACM conference on Information and knowledge management.
Liu, H., He, J., Wang, T., Song, W., & Du, X. (2013). Combining user preferences and user opinions for accurate recommendation. Electronic Commerce Research and Applications, 12(1), 14-23. doi: http://dx.doi.org/10.1016/j.elerap.2012.05.002
Maslow, A. H. (1943). A theory of human motivation. Psychological review, 50(4), 370.
Maslow, A. H., Frager, R., & Fadiman, J. (1970). Motivation and personality (Vol. 2): Harper & Row New York.
Pan, R., & ZHANG, K.-f. (2008). Analysis of Demand Level in Rational and Emotional Product Design. Packaging Engineering, 11, 115-117.
Pang-Ning, T., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. WP Co.
Peñalver-Martinez, I., Garcia-Sanchez, F., Valencia-Garcia, R., Rodríguez-García, M. Á., Moreno, V., Fraga, A., & Sánchez-Cervantes, J. L. (2014). Feature-based opinion mining through ontologies. Expert Systems with Applications.
Pride, W. M., & Ferrell, O. (2010). Marketing express: Cengage Learning.
Qiu, G., Liu, B., Bu, J., & Chen, C. (2011). Opinion word expansion and target extraction through double propagation. Computational linguistics, 37(1), 9-27.
Qiu, G., Wang, C., Bu, J., Liu, K., & Chen, C. (2008). Incorporate the syntactic knowledge in opinion mining in user-generated content. Proceedings of NLPIX’08.
Ries, A., Trout, J., Sabin, W., & Hamerling, M. (1986). Positioning: The battle for your mind: McGraw-Hill New York.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). LEARNING REPRESENTATIONS BY BACK-PROPAGATING ERRORS. Nature, 323(6088), 533-536. doi: 10.1038/323533a0
See-To, E. W., & Ho, K. K. (2014). Value co-creation and purchase intention in social network sites: The role of electronic Word-of-Mouth and trust–A theoretical analysis. Computers in Human Behavior, 31, 182-189.
Shocker, A. D., & Srinivasan, V. (1974). A consumer-based methodology for the identification of new product ideas. Management Science, 20(6), 921-937.
Singh, T., Veron-Jackson, L., & Cullinane, J. (2008). Blogging: A new play in your marketing game plan. Business Horizons, 51(4), 281-292.
Steinbach, M., Karypis, G., & Kumar, V. (2000). A comparison of document clustering techniques. Paper presented at the KDD workshop on text mining.
Subrahmanian, V. S., & Reforgiato, D. (2008). AVA: Adjective-verb-adverb combinations for sentiment analysis. Intelligent Systems, IEEE, 23(4), 43-50.
Wang, N., Shen, X.-L., & Sun, Y. (2013). Transition of electronic word-of-mouth services from web to mobile context: A trust transfer perspective. Decision Support Systems, 54(3), 1394-1403.
Werner, P.-E. (1964). Trial-and-error computer methods for the indexing of unknown powder patterns. Zeitschrift für Kristallographie-Crystalline Materials, 120(1-6), 375-387.
Xu, J., & Zhang, H. (2009). The analyzing on design model of modern Chinese furniture based on Maslow's hierarchy of needs. Paper presented at the Computer-Aided Industrial Design & Conceptual Design, 2009. CAID & CD 2009. IEEE 10th International Conference on.
Yeap, J. A., Ignatius, J., & Ramayah, T. (2014). Determining consumers’ most preferred eWOM platform for movie reviews: A fuzzy analytic hierarchy process approach. Computers in Human Behavior, 31, 250-258.
Zhang, W., Xu, H., & Wan, W. (2012). Weakness Finder: Find product weakness from Chinese reviews by using aspects based sentiment analysis. Expert Systems with Applications, 39(11), 10283-10291. doi: 10.1016/j.eswa.2012.02.166
Zhen, H., Kuiyu, C., Jung-Jae, K., & Yang, C. C. (2014). Identifying Features in Opinion Mining via Intrinsic and Extrinsic Domain Relevance. Knowledge and Data Engineering, IEEE Transactions on, 26(3), 623-634. doi: 10.1109/TKDE.2013.26
Zheng, X., Zhu, S., & Lin, Z. (2013). Capturing the essence of word-of-mouth for social commerce: Assessing the quality of online e-commerce reviews by a semi-supervised approach. Decision Support Systems, 56, 211-222.
二、中文文獻:
莊耀嘉. (1990). 馬斯洛. 台北市: 桂冠.
葉怡成. (1997). 應用類神經網路, 儒林圖書有限公司