簡易檢索 / 詳目顯示

研究生: 江宗澤
Chiang, Tsung-Tse
論文名稱: 輕量化導熱銅/鋁複合材料之製備及其性質之研究
The study of preparation and properties of lightweight and thermal conducting Cu/Al composites
指導教授: 曹紀元
Tsao, Chi-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 126
中文關鍵詞: 熱管理輕量化無電鍍銅鋁基複合材料介金屬化合物放電等離子燒結熱膨脹係數熱傳導係數熱壓
外文關鍵詞: copper electrolessplating, Al base-metal matrix composite, Thermo management, IMC, thermal conductivity, Hot press, spark plasma sintering, CTE, Lighten
相關次數: 點閱:98下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋁基的金屬基複合材料由於在重量上具有優勢,為近年來相當熱門之熱管理材料。本研究以無電鍍銅技術製作鍍銅鋁粉並混合純銅粉,利用粉末冶金方式製作五種等不同含量之Cu/Al複合材料。此外為了瞭解無電鍍處理對複合材料的影響,以純銅/鋁粉依相同比例製成Cu/Al複合材料,與前者加以比較。製程上是使用熱壓與spark plasma sintering(SPS)。研究中對無電鍍銅前處理/無電鍍銅的參數進行最佳化的探討,並成功製備出鍍層均勻、粒徑65~75μm、銅含量為12.5vol% 之鍍銅鋁粉。
    以熱壓法製作銅鋁複合材料,發現當溫度超過400℃,即會產生CuAl2、Cu9Al4等介金屬化合物。若改以SPS製程製作,在400℃、100MPa的參數下,可以得到幾乎不具介金屬化合物結構,緻密度均在98%以上之複合材料。隨著銅含量的增加,其微硬度、壓縮降伏強度、熱傳導係數均隨著提升,緻密度與熱膨脹係數略有減少。最後發現經過無電鍍銅表面處理後,的確有助於提高複合材料之熱性質與機械性質。

    Aluminum base-metal matrix composite became more popular in thermo management materials over the past few years,because it had the advantage of weight. In this research,we prepared the aluminum powder with copper coated via electrolessplating technique. Cu/Al composites of five different contents will be fabricated by P/M method. Besides to realize the effects of electrolessplating in composites,we used pure Cu and Al powders to make the former composites in the same Cu/Al ratio .Hot press and spark plasma sintering (SPS) were both applied to make the composites. The best parameters of pre-copper elelctrolessplating and copper elelctrolessplating were discussed in this research,and the aluminum powders with fine copper coated,65~75μm in diameter,12.5Cu vol%,were successfully made.
    The composites would have the several IMC structures like CuAl2、Cu9Al4 ,when temperature over 400℃ by hot pressing process. But them made by SPS process in 400℃/100MPa had invisible IMC structures,and the density of theoretical were over 98%. With the increase of copper content,the thermal conductivity,micro-hardness and compression yield strength would get raise,and the density of theoretical,coefficient of thermal expansion would be a little decreased. Finally,it would be helping of increasing the thermal and mechanical properties of the composites via the method of elelctrolessplating on surface of the powders .

    摘要 I Abstract II 總目錄 III 表目錄 VI 圖目錄 VII 第一章 序論 1 第二章 文獻回顧與理論基礎 4 2.1. 熱傳導材料發展之回顧與展望 4 2.2. 無電鍍原理 5 2.2.1. 無電鍍銅的反應機構 7 2.2.2. 無電鍍銅鍍液的組成及特性 8 2.3. 鋅置換 10 2.4. 田口式實驗設計方法及變異數分析 10 2.5. 熱壓機制 12 2.6. Spark plasma sintering機制 12 2.7. 介金屬化合物生長機制 14 2.8. 熱膨脹 16 2.8.1. 熱膨脹理論 16 2.8.2. 複合材料熱膨脹係數 16 2.9. 熱傳導 18 2.9.1. 熱傳導理論 18 2.9.2. 複合材料熱傳導係數 20 第三章 實驗方法與步驟 23 3.1. 銅鋁複合金屬粉末之製備 23 3.1.1. 無電鍍前處理 23 3.1.2. 鋁粉無電鍍銅 23 3.2. 粉末混合 24 3.3. 銅鋁粉末熱壓成型 25 3.3.1. 熱壓模具設計與熱壓設備 25 3.3.2. 熱壓實驗參數 26 3.4. 銅鋁粉末以spark plasma sintering成型 26 3.4.1. Spark plasma sintering模具設計與設備 26 3.4.2. Spark plasma sintering參數 27 3.5. 粉末鍍層化學性質分析 27 3.5.1. 感應耦合電漿光譜分析儀 27 3.6. 銅鋁複合材料密度之量測 27 3.7. 粉末鍍層與複合材料微結構之觀察 28 3.7.1. 掃描式電子顯微鏡與能量散佈光譜分析儀 28 3.7.2. 背向式掃描式電子顯微鏡 28 3.7.3. X光繞射分析儀 29 3.8. 銅鋁複合材料機械性質之量測 29 3.8.1. 壓縮測試 29 3.8.2. 洛式硬度測試 30 3.9. 銅鋁複合材料熱傳導係數之量測 30 3.10. 銅鋁複合材料熱膨脹係數之量測 30 3.11. 實驗流程圖 32 第四章 結果與討論 33 4.1. 無電鍍前處理鋁粉性質探討 33 4.1.1. 掃描式電子顯微鏡外觀與能量散佈光譜分析 33 4.1.2. 前處理參數對鋅置換鍍層之影響 33 4.1.3. 鋅鍍層成長機制 35 4.2. 無電鍍銅鋁粉性質探討 36 4.2.1. 鍍層外觀形態 36 4.2.2. 銅鋁比例 36 4.2.3. 變異數分析與參數最佳化 37 4.2.3.1. 粒徑大小 37 4.2.3.2. 溫度 39 4.2.3.3. pH值 39 4.2.3.4. 攪拌速率 40 4.3. 熱壓之銅鋁複合材料性質探討 41 4.3.1. 熱壓壓力對緻密度之影響 41 4.3.1.1. 塊材密度 41 4.3.1.2. 衝頭位移曲線之分析 43 4.3.2. X光繞射結構鑑定 44 4.3.3. 剖面微結構分析 45 4.3.4. 熱壓溫度對介金屬化合物生成之影響 47 4.4. Spark plasma sintering之銅鋁複合材料性質探討 48 4.4.1. 外觀 48 4.4.2. 密度 48 4.4.3. X光繞射結構鑑定 49 4.4.4. 剖面微結構分析 50 4.4.5. 洛氏硬度 51 4.4.6. 壓縮試驗 52 4.4.6.1. 壓縮試片外觀 52 4.4.6.2. 真實應力應變曲線 53 4.4.6.3. 壓縮降伏強度 53 4.4.6.4. 真實應力應變自然對數曲線 55 4.4.6.5. 彈性係數(E)、應變硬化指數(n)與強度係數(k) 56 4.4.7. 熱膨脹係數 57 4.5. 熱壓製程與SPS製程之比較 59 4.5.1. 緻密度 59 4.5.2. 熱傳導係數 60 4.5.3. 溫度與時間對介金屬化合物之影響 61 4.5.4. 塊材內缺陷比例對熱傳導係數之影響 63 第五章 結論 65 第六章 參考文獻 68

    1.工業材料雜誌, “台灣熱傳導產業發展之展望” ,Vol.247, July, 2007.
    2.R. Darveaux,K. L. Murty, and I. Turlik, “Predictive Thermal and Mechanical Modeling of a development MCM”, ibid, pp.36-41.
    3.K. Schmidta and C. Zweben,“Packaging”, International Electronic Materials Handbook, Vol.1, pp.1117-1125, 1988.
    4.M. K. Premkumar and R. R. Sawtell, “Alumnium-Silicon Carbide—A Materials Solution for Thermally Demanding Packaging” , Advanced Packaging, pp.22-25, Sep, 1996.
    5.李宗銘,”半導體封裝材料發展趨勢”,工業材料雜誌, Vol.139,pp.108-116, July, 1998.
    6.C. Thaw,R. Minet, J. Zemany, and C.Zweben, “Metal Matrix Composite Microwave Packaging” , Sample Journal, pp.40-43, Nov, 1987.
    7.P. Yih and D. D. L. Chung, “Copper-Matrix Molybdenum Particle Composites Made from Copper Coated Molybdenum Powder” , Journal of Electronic Materials, Vol.24, No.7, pp.841-851, 1995.
    8.簡建偉,”電子構裝用金屬基複合材料之研究”,中央大學機械工程研究所博士論文, pp21, 2003.
    9.王聖傑,”純銅霧化與銅基複合材料之製程與熱性質探討”,成功大學材料科學與工程研究所碩士論文, July, 2006.
    10.逢板哲爾,“化學反應製造金屬薄膜”,表面處理工業雜誌, Vol.3, pp. 25-31, 1986.
    11.張中良,“非導體表面之金屬化”,工業材料雜誌, Vol.112, pp. 86-92, 1996.
    12.神戶德藏著,莊萬發譯著,“無電解鍍金”,復漢出版社印行, 1989.
    13.G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Florida, USA, Chap. 1. , 1990
    14.G. G. Gawrilov, Chemical (Electroless) Nickel-Plating, Portcullis Press Ltd. , Redhill, Surrey, Chap. 1, 1979.
    15.林冠宇,”熱處理對經過無電鍍銅處理後之鐵粉的化學組成及結構影響研究”,成功大學材料及工程學系碩士論文, Chap.2-2-1, 2003.
    16.P. G. Kim and K. N. Tu, ”Fast dissolution and soldering reactions on Au foilsMater.”, Chem.Phys. , Vol.53, pp.165, 1998.
    17.J. I. Han and S. J. Hong, “Ni Electroless Plating Process for Solder Bump Chip on Glass Technology”, Jpn. J. Appl. Phys, Vol.36, pp.2091, 1997.
    18.Experimental Design for Improved Ceramic Prossing.Emphasizing the Taguchi Method, American Ceramic Society Bull, No.12, Vol.72, pp.87-92, 1993.
    19.Wei Guang Lan, Mimg Keong Wong, and Ni Chen,”Orthogonal Array Design as a Chemometric Method for the Optimization of Analytical Procedures.” , Analyst, Vol.119, pp.87-92, 1994.
    20.李輝煌,田口方法(Taguchi Methods) 品質設計的原理與實務,高立圖書有限公司, 2000.
    21.田口玄一、吉澤正孝,田口式品質工程講座(一) 開發設計階段的品質工程,中國生產力中心, 1990.
    22.田口玄一、山本昌吳,田口式品質工程講座(二) 製造階段的品質工程,中國生產力中心, 1991.
    23.田口玄一、小西省三,田口式品質工程講座(三) 品質評價的S/N比,中國生產力中心, 1991.
    24.田口玄一、橫山巽子,田口式品質工程講座(四) 品質設計的實驗計畫法,中國生產力中心, 1995.
    25.MIT press, Michael B. Bever,”Encyclopedia of Materials Science and Engineering” , pp.2202-2209, 1991.
    26.ASM International, ASM Handbook 9th-powder Metal Technologies and Applications Vol.17, pp.508-515, 1998.
    27.ASM International, ASM Handbook 9th-powder Metal Technologies and Applications Vol.17, pp.947-956, 1998.
    28.ASM International, Engineered Materials Handbook – Desk Edition, pp.1068-1070, 1995.
    29.ASM International, Engineered Materials Handbook – Desk Edition, pp.802-804, 1995.
    30.G. F. Taylor, “Apparatus for Making Hard Metal Compositions.”, US Patent No.1, 896, 854, 1933.
    31.Idem., “Investigation of concentration of economic power.”, US Patent No.1, 896, 853, 1933.
    32.G. D. Cremer, “Sintering together Powders Metals such as. Bronze, Brass or Aluminum.”, US Patent No.2, 355, 954, 1944
    33.R. W. Boesel, M. I. Jacobson and I.S. Yoshioka,” Spark Sintering Tames Exotic P-M Materials.”, Proc. Fall powder Met. Conf. Metal Powder Industries Federation, New York, pp.75-99, 1970.
    34.C. G. Goetzel and V. S. Demarchi, “Electrically Activated Pressure Sintering - Spark Sintering - of Ti powders.”, Powder Met.Int, Vol.3, pp.80, 1971.
    35.K. Inoue, US Patent No.3, 340, 052, 1967.
    36.Idem, US Patent No.3, 656, 946, 1972.
    37.I. J. Shon and Z. A. Munir, “Synthesis of MoSi2–xNb and MoSi2–yZrO2 composites by field-activated combustion method.”, Mater.Sci.Engin. , A202, pp.256, 1995.
    38.G. Xie, O. Ohashi, M. Song, K. Mitsuishi and K. Furuya, “Reduction mechanism of surface oxide films and characterization of formations on pulse electric-current sintered Al–Mg alloy powders.”, Appl.Surf.Sci. , Vol.241, pp.102, 2005.
    39.W. M. Goldberger, B. Merkle and D. Boss, “Making Dense Near-Net Shaped Parts by Electroconsolidation.”, Adv. Powder Metal. Particulate Mater, Vol.6, pp.91, 1994.
    40.M. Tokita, “Spark plasma synthesis from mechanically activated powders.”, Mater. Sci. Forum, Vol.83, pp.308-311, 1999.
    41.Z. Shen, M. Johnsson, Z. Zhao and M. Nygren, “Spark plasma. sintering of alumina.”, J.Amer.Ceram.Soc, Vol.85, pp.1921, 2002.
    42.Z. A.Munir, M. Ohyanagi, ”The effect of electric field and pressure on the synthesis and consolidation of materials:A review of the spark plasma sintering method” , J Mater Sci, Vol.41, pp.763-777, 2006.
    43.W. B. Lee,K. S. Bang, S. B. Jung, ”Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing” , Journals of Alloys and compounds, Vol.390, pp.212-219, 2005.
    44.S. B. Jung, Doctorial thesis, Osaka University, Japan, 1993.
    45.徐慧,王春青,杭春進,”老化過程中Cu/Al合金鍵結介面金屬間化合物的生長行為” , Acta Metallurgic Sinica, Vol.43, No.2, pp.125-130, 2007.
    46.ASM Handbook Vol.2, Am. Soc. for Metals, Metals Park, OH. , pp.401, 1991.
    47.P. S. Turner, “Thermal-Expansion Stresses in Reinforced Plastics.”, J. Res. NBS, Vol.37, pp.239, 1946.
    48.E. H. Kerner, “The Elastic and Thermo-elastic Properties of Composite Media Proc.”, Phys. Soc, Vol.69, pp.808, 1956.
    49.Incropera, DeWitt,”Fundamentals of Heat and Mass Transfer 4/e”.
    50.P. K. and K.S.Reddy, “Effective conductivity estimation of binary metallic muxtures”, International Journal of Thermal Science, Vol.46, pp.419-425, 2007.
    51.Maxwell, J. C., A Treatise on Electricity and Magnetism, 13rd, Oxford University Press, 1904.
    52.Lord Rayleigh,”On the Influence of Obstacles Arranged in Rectangular Order Upon the Properties of a Medium” , Phil. Mag. , Vol.34, pp.841, 1892.
    53.Hasselman DPH, Johnson LF., “Effective thermal conductivity of composites with interfacial thermal barrier resistance.”, J Compos Mater, Vol.21, pp.508, 1987.
    54.Lashmore, D. S. ,”Immersion coating on aluminum” , Plating and Surface Finshing, Vol.67, No.1, pp.37, 1980.
    55.Lashmore, D. S. , “The high temperature oxidation of metals forming cation-diffusing scales.”, J. Electrochem. Soc. , Vol.127, pp.573, 1980.
    56.Randaill M. German, Particle Packing Characteristics, Metal powder industries federation.
    57.H. J. Kim, J. Y. Lee, K. W. Paik, K. W. Koh, J. H. Won, S. Y. Choe, J. Lee, J. T. Moon, Y. J. Park, “Effects of Cu/Al intermetallic compound (IMC) formation on Cu wire and Al pad bondabilityIEEE trans compon package Technol”, Vol.26, pp.367, 2003.
    58.Murali S, Srikanth N, Vath C J Mater Res Bull, “Recrystallization and fracture characteristics of thin copper wire.”, Vol.38, pp.637, 2003.
    59.Q.Sun, O.T.Inal, “Fabrication and characterization of diamond/copper composites for thermal expansion cofficient.”, Mater Sci.Eng, B41, pp.261, 1996.

    下載圖示 校內:2010-01-20公開
    校外:2012-01-20公開
    QR CODE