簡易檢索 / 詳目顯示

研究生: 劉芩喬
Lin, Chin-Chiao
論文名稱: 氫氧化鐵與離子交換樹脂去除砷之動力、平衡與傳輸
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 129
中文關鍵詞: 氫氧化鐵樹脂吸附
外文關鍵詞: pore diffusion model, ion exchange, arsenic, arsenate, adsorption
相關次數: 點閱:63下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究探討砷在兩種砷處理介質中之吸附平衡、動力及管柱傳輸行為。研究中採用一商業化之粒狀氫氧化鐵(Bayoxide E33)及一陰離子交換樹脂(Arsenex)來進行吸附砷之試驗。實驗包括吸附動力與平衡、背景電解質與管柱試驗等,並以孔隙擴散模式(Pore Diffusion Model)來模擬吸附動力,以瞭解砷之吸附特性。
    研究結果顯示,以多孔性的氫氧化鐵所構成的E33,其主要晶相的鑑定為α-FeOOH(Goethite),吸附五價砷平衡所需的時間需7小時,在中性pH的條件下,初始濃度為10mg/L時吸附量可達31mg/g,而在初始濃度2.6mg/L時吸附量為15.3mg/g,此平衡吸附的結果與管柱試驗有相同的結果;而pH值越小情況下,對於五價砷吸附量越高。若加入背景電解質NaNO3,E33對砷的去除率隨著離子強度的增高而降低。
      在Arsenex方面,其主要元素為N、C、H、Cl,且根據FTIR的鍵結圖譜可以推測其為作用基為胺基,吸附五價砷動力平衡所需的時間需4小時左右,在中性pH的條件下,初始濃度為10mg/L時吸附量可達16mg/g,若加入背景電解質NaNO3,砷的去除率亦隨著離子強度的增高而降低。且另以CO2為干擾物質進行曝氣與無曝氣的試驗,以測定總無機碳來得知溶液中所含的CO2的量,結果發現系統在曝氣的狀態下,pH=7.5時CO2的量降低了2mg/L,且吸附量提高至39mg/g,與無曝氣的狀態比較約提升2.3倍,明顯的在pH越高時,受CO2的影響也越大。
      模式方面利用孔隙擴散模式去模擬吸附劑吸附砷之吸附動力,並利用兩種等溫吸附模式(Freundlich 及 Langmuir Isotherm)所求得之參數,來推估最佳化的孔隙擴散係數。模擬E33在中性pH值吸附動力時,所得到最佳化的孔隙擴散係數(Dp)為4.0×10-10 m2/sec,其曲折度(tourosity,τ)為2.5,並可以有效預測不同砷濃度下之吸附行為。該模式也可以模擬砷在Arsenex中之吸附動力行為,所得到的最佳化的孔隙擴散係數(Dp)為5.0×10-9 m2/sec。最佳化之DP值用於預測不同砷濃度及不同曝氣條件下,也均能有效描述砷在Arsenex中之吸附動力行為,顯示該模式之應用性。

      Arsenic is commonly present in many ground water sources around the world. To remove arsenic from groundwater, several advanced techniques, including adsorption and ion exchange, are often employed in drinking water treatment processes. In this study, the transport and adsorption of arsenate within one ferric hydroxide based adsorbent (E33 from Bayer) and one ion exchange resin (Arsenex from Pyrolite) is elucidated.
      Several instruments were employed for the surface analysis of the two media, including x-ray diffraction, scanning electron microscopy, x-ray fluorescence, and Fourier transformed infra-red spectrometer. Surface analysis of E33 indicated that the medium is porous and is mainly composed of goethite. For Arsenex, the major elements are nitrogen, chlorine, hydrogen, and carbon, and the major exchange function group is amide group.
      A batch reactor with temperature was used to determine the adsorption kinetics and capacity of arsenic onto the two media. The experimental results revealed that the adsorption equilibrium was established within 7 hours for E33 and 4 hours for Arsenex. The uptake of arsenate decreased as pH increased for E33, since the surface charge of E33 becomes more negative at higher pH.   However, the arsenate uptake increased as pH increased due to the fact that more di-valent arsenate ions were produced at higher pH. After fitting the arsenate uptake data, both the Freundlich and Langmuir isotherm equations may be used to describe the experimental uptake data for both media.
      A pore diffusion model, combined with the isotherm parameters, was used to simulate the adsorption kinetic data. In fitting the models to the experimental data, only one parameter, pore diffusivity (Dp), is adjusted. The models conform closely to the experimental data, and the extracted pore diffusion coefficient of arsenate was 4.0×10-10 m2/sec for E33 and 5.0×10-9 for Arsenex. The model with the extracted diffusion coefficients was able to predict the kinetic adsorption curves for other experimental conditions, indicating that the model is appropriate for the systems tested in this study. The extracted diffusivities are found different from those in two other metal oxide/arsenate systems reported earlier. This may be attributed to the different porosity observed for the four adsorbents.

    摘要 I 英文摘要 III 目 錄 V 表目錄 X 圖目錄 XII 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的與內容 2 第二章 文獻回顧 3 2-1 砷的性質與危害 3 2-1-1 砷的來源 3 2-1-2 砷的化學特性 6 2-1-3 砷的毒性及危害 10 2-1-4 台灣地區地下水中砷的流佈 11 2-2 氧化鐵的介紹與應用 13 2-2-1 氧化鐵的種類 13 2-2-2 氧化鐵的化學 17 2-2-3 鐵氧化物吸附砷之應用 22 2-3 離子交換樹脂的介紹與應用 25 2-3-1 離子交換樹脂的原理 25 2-3-2 離子交換樹脂的型式 26 2-3-3 離子交換樹脂去除砷之應用 27 2-4 吸附基本理論 30 2-4-1 物理吸附與化學吸附 30 2-4-2 特定吸附與非特定吸附 31 2-4-3 背景電解質對吸附反應的影響 31 2-5 等溫吸附模式 32 2-6 動力吸附模式--孔隙擴散模式 35 第三章 實驗方法與設備 38 3-1 吸附劑之介紹 38 3-1-1 Bayoxide E33 38 3-1-2 Pourlite ARSENEX 38 3-2 吸附劑之表面特性鑑定 41 3-2-1 掃描式電子顯微鏡(SEM) 41 3-2-2 X光繞射(XRD) 41 3-2-3 傅立葉轉換紅外線光譜(FTIR) 42 3-2-4 X光螢光分析(XRF) 43 3-2-5 元素分析(EA) 43 3-2-6 硫氯分析儀 43 3-2-7 比表面積和孔徑分佈 43 3-2-8 抗酸鹼性溶出試驗 45 3-3 分析方法與設備 46 3-3-1 砷的分析方法 46 3-3-2 真密度與孔隙率量測 47 3-4 吸附實驗 48 3-4-1 實驗試劑與設備 48 3-4-2 吸附動力實驗 49 3-4-3 吸附平衡實驗 51 3-4-4 背景電解質對吸附平衡實驗 51 3-4-5 曝氣去除CO2干擾實驗 51 3-5 動力吸附模式-孔隙擴散模式 52 3-6 管柱貫穿實驗 53 3-6-1 管柱實驗裝置 53 3-6-2 管柱實驗 53 3-6-2-1 離子交換樹脂管柱實驗 53 3-6-2-2 E33管柱實驗 53 第四章 結果與討論 56 4-1 氫氧化鐵與樹脂表面特性之分析 56 4-1-1 表面顯微結構之觀察 56 4-1-1-1 E33表面觀察 56 4-1-1-2 Arsenex表面觀察 59 4-1-2 比表面積和孔徑分佈 64 4-1-2-1 E33比表面積和孔徑分佈 64 4-1-2-2 Arsenex比表面積 69 4-1-3 元素分析 71 4-1-3-1 E33之元素分析 71 4-1-3-2 Arsenex之元素分析 73 4-1-4 E33之X光繞射 74 4-1-5 FTIR表面鍵結分析 76 4-1-5-1 E33吸附表面分析 76 4-1-5-2 Arsenex吸附表面分析 79 4-1-6 抗酸鹼性強度試驗 82 4-2 吸附實驗 84 4-2-1 吸附平衡時間之推估 84 4-2-1-1 E33吸附動力 84 4-2-1-2 Arsenex吸附動力 86 4-2-2 背景電解質對平衡的影響 88 4-2-2-1 E33添加背景電解質試驗 88 4-2-2-2 Arsenex添加背景電解質試驗 89 4-2-3 pH值下吸附量的影響 90 4-2-3-1 E33在不同pH值下對砷之吸附量 90 4-2-3-2 Arsenex在不同pH值下對砷之吸附量 91 4-2-4 等溫吸附線 92 4-2-4-1 E33等溫吸附模擬 92 4-2-4-2 Arsenex等溫吸附模擬 94 4-2-5 二氧化碳對Arsenex吸附實驗 96 4-2-5-1 曝氣下之動力吸附 96 4-2-5-2 曝氣下對吸附量的影響 97 4-2-5-3實驗前後CO2濃度的改變 98 4-3 吸附動力模擬 100 4-3-1 E33吸附動力模擬 100 4-3-1-1 E33吸附動力配合Freundlich Isotherm 模擬與預測 100 4-3-1-2 E33吸附動力配合Langmuir Isotherm 模擬與預測 102 4-3-1-3 E33、GEH與Al2O3孔隙擴散係數比較 104 4-3-2 Arsenex吸附動力模擬 108 4-3-2-1 Arsenex吸附動力配合Freundlich Isotherm 模擬與預測 108 4-3-2-2 Arsenex吸附動力配合Langmuir Isotherm 模擬與預測 111 4-4 管柱貫穿實驗 115 4-4-1 E33管柱試驗 115 4-4-2 Arsenex管柱試驗 117 第五章 結論與建議 119 5-1 結論 119 5-2 建議 121 參考文獻 122

    Bakoyakknnakis, D. N., Deliyanni, E. A., Zouboulis, Matis, K. A., Nalbandian, L., Kehagias, Th., “Asaganeite and goethite-type nanocrystals: synthesis and characterization”, Microporous and Mesoporous Material, 59, pp. 35-42, 2003.
    Chen, S.L., Dzeng, S.R., Yang, M.H., “Arsenic Species in Groundwater of the Blackfoot Disease Area, Taiwan”, Environ. Sci. Technol., 28, pp. 877-881, 1994.
    Chunming, S., Robert, W.P., “Arsenate and Arsenite Removal by Zerovalent Iron: Kinetic, Redox Transformatiion, and Implications for in Situ Groundwater Remediation”, Environ. Sci. Technol., Vol. 35, pp. 1487-1492, 2001.
    Nikolaos, P. N., Gregory , M. D., Jeffrey, A.L., “Arsenic Removal by Zero-valent Iron: Field, Laboratory and Modeling studies”, Water Research, 37, pp. 1417-1425, 2003.
    Chunming, S., Robert, W.P., “In Situ Remediation of Arsenic in simulated Groundwater Using Zeroval Iron: Laboratory Clumn Tests on Combined Effects of Phosphate and Silicate”, Environ. Sci. Technol., 37, pp. 2582-2587, 2003.
    Cifford, D. “Ion exchange and inorganic adsorption.” In: A. Letterman, Water Quality and Treatment, American Water Works Association, Mcgraw Hill, New York, 1999.
    Cornell, R.M., Schwertmann, U., “The iron oxides : structure, properties, reactions, occurrence and uses”, Wiley-VCH, New York, 1996.
    Davis, S. A., Burkett, S. L., Mendelson, N. H., Mann, S.” Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases ” , Nature, 385, 1997.
    Deliyanni, E.A., Bakoyannakis, D.N., Zouboulis, K.A., Matis K.A., “Sorption of As (V) ions by akaganeite-type nanocrystals”, Chemosphere, 50, pp. 155-163, 2003.
    Driehaus W., Jekel, M., Hildebrandr, U.,“Granular ferric hydroxide-a new adsorbent for the removal of arsenic from natural water”, J. Water SRT-Aqua, 47, 1, pp. 30-35, 1998.
    Ferguson, J.F., Gavis, J., “A review of the arsenic cycle in natural waters”, Water Res, 6, pp. 1259–1274, 1972.
    Edwards, M., “Chemistry of Arsenic Removal during Coagulation and Fe-Mn Oxidation ”, J. AWWA, 86, 9, pp. 64-78, 1994.
    Gregg, S. J., Sing, K. S. W., Adsorption, Surface Area and Porosity, 2nd Ed.,Academic press, New York, 1982.
    Goldberg, S., Johnson, C.T., “Mechnisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling”, J. Colloid and Interface Science, 234, pp. 204-216, 2001.
    Horng, Liou-Liang, Clifford, Dennis, “The behavior of polyprotic anions in ion-exchange resins”, Reative and Functional Polymers, 35, pp. 41-54, 1997.
    Iven, P., Kostadin, P., Ilona, S., “Dynamics of non-isothermal adsorption in packed bed of biporous zeolites”, Chemical Engineering Journal, 85, pp. 245-257, 2002.
    Jia, W., Xin, Z., Jun, Y., “Pore structure of water-wettable hydrophobic resin based on Divinylbenzene and Methyl Acrylate”, Joural Applied Ploymer science, 92, pp. 2681-2688, 2004.
    Knodo, H., Ishiguro, Y., Ohno, K., Nagase, M., Toba, M., Makoto, T.,“Naturally Occurring Arsenic in the Groundwater in the Southern Region of Fukuoka Prefecture, Japan”, Wat. Res., 33, pp. 1967-1972, 1999.
    Korngold, E., Belayev, N., Aronov, L., “Removal of arsenic from drinking water by anion exchangers”, Deaslination, 141, pp. 81-84, 2001.
    Lin, T.F. and Wu, J.K., ”Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics”, Wat. Res. Vol. 35, No. 8, pp. 2049-2057, 2001
    Lin, T.F., Little, J.C., Nazaroff, W.W., “Transport and sorption of organic gases in activated carbon”, J. Environ. Engng., ASCE, 122, pp. 169-175, 1996.
    Lin, T.F., Little, J.C., Nazaroff, W.W., “Transport and sorption of volatile organic compounds and water vapor within dry soil grains”, J. Environ. Engng., ASCE, 122, pp. 169-175, 1996.
    Matis, K.A., Zouboulis, A.I., Malamas, F.B., Afonso, M.D.R., Hudson, M.J., “Flotation removal of As(V) onto gothite”, Environ. Pollut., 97, pp. 239-245, 1997.
    Meng, X.G., Bang, S.B., Korfiatis,G.P.,“Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride”, Wat. Res., 34, No. 4, pp.1255-1261, 2000.
    Pierce, M.L. and Moore, C.B., “Adsorption of arsenite and arsenate on amorphous iron hydroxide”, Water Res., 16, pp. 1247-1253, 1982.
    Ping, Li and Arup, K. S., “Intraparticle diffusion during selective ion exchange with a macroporous exchanger” , Reactive & Functional polymers, 44, pp.273-287, 2000.
    Raven, K.P., Jain, A., Lodppert, R.H., “Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes”, Enviton. Sci. Technol., 32, pp. 344-349, 1998.
    Ruthven D. M., “Principles of Adsorption and Adsorption Processes”, Wiley, NY, USA, 1984.
    Sahai, N., Sverjensky, D.A., “Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data”, Geochimica et Cosmochimica Acta, 61, 14, pp. 2801-2826, 1997.
    Sharma, D. C., Forster, C. F., “Column Studies into the adsorption of Chromium(VI) Using Sphanum Moss Peat”, Bioresource Technology, 52, pp. 261-267, 1995.
    Sadler, R., Olszowy, H., Shaw, G., Connell, DD., “Soil and Water Contamination by Arsenic from Atannery Waste”, Water Air and Soil Poll., 78, pp. 189-198, 1994.
    Smedley, P. L., Kinniburgh. D. G., “A Review of Source, Behavior and Distribution of Arsenic in Natural Waters”, Applied Geochemistry, 17, pp. 517-568, 2002.
    Sposito, G., “ The surface chemistry of soils”, Oxford University Press, New York, 1984.
    Stumm, W., Huang, C. P., and Jenkins, S. R. “Specific chemical interaction affecting the stability of dispered system,” Croatica Chemica Acta, 42, pp. 223-244, 1970.
    Tchounwou, P. B., Wilson, B., Ishaque, A., “Important considerations in the development of public health adivisories for arsenic and arsenic-containing compounds in drinking water.,” Reviews on Environ Health, 14, 4, pp. 211-229, 1999.
    William, W.N., Lisa A. C., “Environmental Engineering Science”, John Wiley& Sons, INC., USA, 2001.
    William R. Cullen, Kenneth J.Reimer, “Arsenic Speciation in the Environment” , Chem. Rev., 89, pp. 713-764, 1989.
    Xu, H., Allard, B., Grimvall, A., “Effects of Acidification and Natural Organic Materials on the Mobility of Arsenic in the Environment”, Water Air and Soil Poll., 57-58, 269-278, 1991.
    Yamauchi, H., Bruce A. Fowler, “Toxicity and metabolism of inorganic and methylated arsenicals”, In:Jerome O. Nriagu (Eds.) ” Arsenic in the environment , Part II:Human Health and Ecosystem Effetcs”, John Wiley & Sons, Inc., pp. 35-54, 1994.
    Zeltner, W.A., Yost, E.C.,Machesky, M.L., Tejedor-Tejedor, M.I., M.A. Anderson, “Characterization of Anion Binding on Gothite Using Titration Calorimetry and Cylindrical Internal Reflection-Fourier Transform Infrared Spectroscopy“, In:Davis&Hayes (Eds.), “Geochemical Processes at Mineral Surfaces”, ACS Symposium 323, Chapter 8, pp. 142-161, 1986.
    王成財, “砷As(V)在水化鐵、鋁氧化物表面吸附特性之研究”,國立成功大學環境工程學系碩士論文,1990。
    阮國棟, “砷之污染特性及處理技術”,工業污染防制,第5 卷,第二期,pp. 156-165,1986。
    吳錦昆, “氧化鋁吸附地下水中砷之研究”,國立成功大學環境工程學系碩士論文,1999。
    呂鋒洲, “螢光物質-腐植酸與烏腳病之相關研究”,中華衛生雜誌,第15 卷,第三期,pp.139-149,1996。
    曾迪華, “工業廢水離子交換處理”,工業污染防制手冊之十,經濟部工業局,1987。
    陳從和, “砷之特性及其檢驗處理方法”,自來水會刊雜誌,第13 卷,pp. 105-115,1977。
    李雅萍,“混凝與離子交換法去除水中As(V)之研究”國立台灣大學環境工程研究所碩士論文,1999。
    黃任偉,“粒狀氫氧化鐵吸附地下水中砷之研究”,國立成功大學環境工程學系碩士論文,2002。
    鄭仲凱,“氫氧化鐵吸附水中砷之動力與平衡研究”, 國立成功大學環境工程學系碩士論文,2003。
    劉鎮宗, “砷與生態環境的關係”,科學月刊,第26 卷,第一期,pp.134-140,1995。
    羅美棧, “本省西南地區地下水砷含量調查研究報告”,自來水會刊雜誌第九期,pp. 48-60,1975。
    賴進興, “氧化鐵覆膜濾砂吸附過濾水中銅離子之研究”,國立台灣大學環境工程研究所博士論文,1995。
    孫嘉福、駱尚廉, “氧化鐵之特性與應用”,自來水會刊雜誌,第49 期,pp. 47-56,1994。
    陳維政、黃靖修,環境化學精要,九樺出版社, 1994。

    下載圖示 校內:2005-06-30公開
    校外:2005-06-30公開
    QR CODE