| 研究生: |
黃裕欣 Huang, Yu-Hsin |
|---|---|
| 論文名稱: |
冷卻水塔風扇葉片氣流分析 Flow Field Analysis for a cooling tower fan of blade |
| 指導教授: |
闕志哲
Chueh, Chih-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 冷卻水塔 、計算流體力學 、攻角 、扭轉角 |
| 外文關鍵詞: | cooling tower, computational fluid dynamics, attack angle, twist angle |
| 相關次數: | 點閱:72 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
冷卻水塔是現今工商業常用之熱交換設備,從一般商業空調系統到大型製造工業製程相關冷卻系統,都可以看到冷卻水塔在其中扮演重要的角色。其原理是利用兩種流體,分別為水和空氣直接的接觸,於接觸過程透過蒸發、對流及熱傳導等機制來進行熱交換,使其達到熱能傳遞的目的。在整個熱交換的過程中,散熱風量對冷卻水塔的熱交換量有著直接的關係,而散熱風量的大小則取決於冷卻水塔散熱風扇葉片的相關條件,如何以既有風扇翼型條件,找出最大風量之風扇葉片攻角,提升冷卻水塔散熱風量,進而降低冷卻水溫度來達到冰水系統之節能,將是以相對簡單的方式來進行既有系統節能的改善方式,而且成本相對較低廉,可提升一般公司企業願意進行改善之意願。
本研究利用計算流體力學進行分析,探討風扇葉片不同位置在不同攻角的狀態下,其升力及阻力之影響。本文將冷卻水塔散熱風扇葉片,由風扇葉片翼根至翼尖均分7處,其距離冷卻水塔中心分別為60cm、120、180cm、240cm、300cm、360cm及420cm,透過改變每一處冷卻水塔散熱風扇葉片攻角的大小由0˚至-30˚,來觀察流場分佈、壓力分佈及阻力分佈,並分析各處最大升力之攻角及扭轉角所組成的風扇葉片角度,以及不同風扇葉片角度組成之差異,本研究之成果期可做為未來冷卻水塔風扇葉片攻角調整節能之參考。
Cooling towers are commonly used as heat exchange equipment in today's industry and commerce. From commercial air-conditioning systems to large-scale manufacturing process-related cooling systems, cooling towers can be seen to play an important role in them. The principle is to use two fluids, namely water and air, to come into direct contact, in the contact process through evaporation, convection and heat conduction mechanism to carry out heat exchange, so that it achieves the purpose of heat transfer. During the entire heat exchange process, the cooling air volume is directly related to the heat exchange volume of the cooling tower, and the size of the cooling air volume depends on the relevant conditions of the cooling fan blades of the cooling tower. How to find the fan blade of attack angle with the maximum airflow under the existing fan wing conditions, to increase the cooling airflow of the cooling tower, and then reduce the temperature of the cooling water to achieve the energy saving of the chiller water system is a relatively simple way to improve the energy saving of the existing system. It is also relatively inexpensive and can increase the willingness of companies to make improvements.
This study utilizes computational fluid dynamics to analyze and explore the effects of lift force and drag force at different positions of the fan blades at different attack angles. In this paper, the cooling fan blades of a cooling tower are divided into 7 places from the root to tip of the fan blades, and their distances from the center of the cooling tower are 60cm, 120cm, 180cm, 240cm, 300cm, 360cm, and 420cm, respectively. By changing the attack angle of each cooling fan blade from 0˚ to -30˚ at cooling tower, the flow field distribution, pressure distribution and drag force distribution are observed, and analyze the fan blade angle and twist angle composed of the attack angle of the maximum lift force at each place, as well as the difference in the composition of different fan blade angles. The results of this study can be used as a reference for future cooling tower adjustments attack angle of fan blade to save energy.
[1]經濟部能源局,能源統計手冊,2022年
[2]林逸群,應用專家系統於中央空調系統之故障診斷,碩士論文,國立台北科技大學電機工程系研究所,民91。
[3]郭祐豪,改良翼型葉片提升冷卻水塔風機效率及降低氣動噪音技術之研究,國立台北科技大學能源與冷凍空調工程系碩士論文,民國112年
[4]劉師毅,空調冷卻水溫度對系統耗能影響之研究,國立臺北科技大學論文,民國99年
[5]馬崧富,提升卻水塔風扇節能改善之研究,國立彰化師範大學電機工程學系碩士論文,民國112年
[6]節能技術案例彙編-冷卻水塔效率提升,財團法人台灣綠色生產力基金會,2000。
[7]Derksen, D. D., Bender, T. J., Bergstrom, D. J., and Rezkallah, K. S., “A study on the effects of wind on the air intake flow rate of a cooling tower”, Journal of Wind Engineering and Industrial Aerodynamic, Vol.64, pp.47-59,1996.
[8]Robert, N. M., “CFD prediction of cooling tower drift”, Journal of wind Engineering and Industrial Aerodynamic, Vol.94, pp.463-490,2006.
[9]Hanna, S. R., “A simple drift deposition model applied to the chalk point dye tracer experiment”, in: Symposium on Environmental Effects of Cooling Tower Plumes, May 2-4, 1978, University of Maryland, PPSP CPCTP-22,WRRC Special Report No. 9.(Also NOAA, ATTDL contribution File No.78/3),1978, pp. III_105-III_118.
[10]Kant, K., “Knowledge base for the systematic design of wet cooling tower. Part II: Fill and other design parameters”, int J. Refrig.Vol.19, No.1, pp.52 60,1996.
[11]李忠皓,冷卻水塔風扇性能改善,國立臺灣海洋大學系統工程暨造船學系碩士論文,民國101年
[12]郭長榮,冷卻水塔的效能提升與節能探討,國立中興大學環境工程學系在職專班碩士論文,民國104年
[13]陳俊榮,冷卻水塔之流場分析,國立成功大學機械工程學系碩士論文,民國104年
[14]王吉一,節能之冷卻水塔研究,國立交通大學工學院產業安全與防災學程,民國91年
[15]Mohiuddin, A. K. M. and Kant, K. ,” Knowledge base for the systematic design of wet cooling towers-part II :Fill and other design parameters” ,Int. J. Refrig. Vol. 19, No.1, , pp.43-51pp.52-60 ,1996.
[16]李健輔,冷卻水塔風扇效能分析,朝陽科技大學環境工程與管理系碩士論文,民國110年
[17]鐘守安,通風機與泵之設計,五洲出版社,1974年。
[18]Eck, B., Fans:Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans(translate and edited by Azad, R. S., and Scott, D.R.),Pergamon Press, Oxford, New York, (1993)
[19]楊淯仁,小型軸流風扇葉片設計及分析,台北城市科技大學機械工程系機電整合碩士論文,民國106年
[20]郭靖玟,偏航角與大氣條件風機尾流與發電效率之影響,國立台灣大學工學院機械工程學系碩士論文,民國110年