| 研究生: |
黃士哲 Huang, Shih-Che |
|---|---|
| 論文名稱: |
有機色素增感太陽電池─雞尾酒色素/色素能帶階梯增感之探討 Sensitization of Nanocrystalline TiO2 Solar Cells by Using Organic Dye Cocktails and Bandgap Cascade Approaches |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 共吸附 、色素增感太陽電池 、雞尾酒有機色素 、有機色素能帶階梯 、中間層 |
| 外文關鍵詞: | Organic bandgap cascade, Interlayer, Co-adsorption, Organic dye cocktails, Dye-sensitized solar cells |
| 相關次數: | 點閱:191 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
文獻中使用釕為中心金屬的色素,雖然可以使色素增感太陽電池效率超過11%,但要廣泛地應用將會面臨到釕金屬錯合物資源有限的問題。相較於釕金屬錯合物,有機色素的潛力乃在於資源上沒有限制的問題,普及化相當地容易,並且有著較佳的消光係數。然而,有機色素本身在可見光的吸光範圍相對地窄了許多,導致於對太陽光的吸光能力有著負面的影響。因此,發展出雞尾酒色素及色素能帶階梯增感的方法來增加可見光的吸光範圍,並且在文獻上,雞尾酒有機色素增感太陽電池利用三種色素的共增感,效率能達到最高6.5%,而在有機色素能帶階梯增感太陽電池能達到1.67%。
在本文使用三種市售便宜的有機色素 ─ C343、Eosin Y以及Mercurochrome ─ 依照不同的組成比例來達成共增感的效應,並且有系統地探討吸附的性質、吸附動力學、中間層 ─ CuSCN、色素的聚集以及光電轉化效率。實驗結果顯示出共增感在光的吸收有增益的效果,然而在雞尾酒有機色素增感太陽電池卻呈現出負偏差的狀況,另一方面,藉由導入中間層的色素能帶階梯增感太陽電池可以令整體效率高於兩成份色素中的一種。本文亦就可見光光譜及IPCE特徵曲線探討雞尾酒色素/色素能帶階梯影響電池總效率的主要因素。
Although dye-sensitized solar cells (DSSCs) with ruthenium (Ru) complexes as sensitizers may reach an overall efficiency up to 11%, the limited availability of Ru complexes will become a problem if DSSCs find wide application. Compared with Ru complexes, organic sensitizer dyes which generally have much larger molar extinction coefficients and can be prepared and purified more easily and economically, therefore, exhibit promising potential in DSSC applications. Organic dyes, however, have relatively sharp absorption bands in the visible region, which is a disadvantage for harvesting of solar light. As a result, dye cocktails and bandgap cascade approaches have been proposed to broaden the absorption spectrum. The highest overall efficiencies of 6.5% (Chen et al., 2005) and 1.67% (Perera et al., 2003) for DSSCs by the dye cocktails approach with triple-dye-sensitization and the bandgap cascade approach with dye bilayer sensitization, respectively, have been documented in the literature.
In this work, three commercial cheap organic dyes — that is, C343, Mercurochrome, and Eosin Y─ were employed to sensitize the solar cells. Adsorption properties, adsorption dynamics, interlayer—CuSCN, dye aggregation behavior, and photosensitization properties were investigated systematically. The experimental results indicated that co-sensitization is efficient in light harvesting. The overall efficiencies through dye cocktails approach by using C343 and Mercurochrome and Eosin Y and Mercurochrome binary mixed dyes, however, showed a negative deviation from the ideal mixing calculations. In the other way, the overall efficiencies through bandgap cascade approach by using Mercurochrome/C343 and Eosin Y/Mercurochrome layer-by-layer deposited dyes were lower than that of the solar cell sensitized by the single dye with higher efficiency may exhibit a higher efficiency than that of one of the two dyes by using interlayer. The main factors that affect the sensitization performance were discussed further through visible light absorption and IPCE(incident photon-to-electron conversionefficiency)characteristics.
Amao, Y., and Komori, T., “Dye-sensitized Solar cell using a TiO2 nanocrystalline film electrode modified by an aluminum phthalocyanine and myristic acid coadsorption layer,” Langmuir., 19,8872-8875 (2003).
Cai, Q., Paulose, M., Varghese, O. K., Grimes, C. A., “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation,” J. Mater. Res., 20, 230-236(2005).
Bandara, J., and Weerasinghe, H., “Design of high-efficiency solid-state dye sensitized solar cells using coupled dye mixtures,” Solar Energy Materials & Solar Cells, 90, 864–871(2006).
Chen, Y. S., Zeng Z. H., Li, C., Wang, W. B., Wang, X. S. and Zhang B. W., "Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes", New J. Chem., 29, 773-776 (2005).
Clifford, J. N., Palomares, E., Nazeeruddin, M. K., Thampi, R., Grätzel, M., and Durrant, J. R., “Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films,” J. Am. Chem. Soc, 126, 5670-5671(2004).
Deng, H., Lu, Z., Shen, Y., Mao, H., and Xu, H., ” Improvement in photoelectric conversion of a phthalocyanine-sensitized TiO2 electrode by doping with porphyrin,” Chemical Physics, 231, 95–103(1998).
Ehret, A., Stuhl, L., Spitler, and M. T., ”Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes,” J. Phys. Chem. B, 105, 9960-9965(2001).
Fang, J., Su, L., Wu, J., Shen, Y., and Lu, Z., “ Fabrication, characterization, and photovoltaic study of dye-co-modified TiO2 electrodes,” New J. Chem, 21, 1303-1307(1997).
Fang, X., Ma, T., Guan, G., Akiyama, M., Kida, T., Abe E., “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell,” J. Electroanalytical Chemistry, 570, 257–263(2004).
Grätzel, M, “Photoelectrochemical cells,” Nature, 414, 338-344(2001).
Guo, M., Diaoc, P., Rena, Y. J., Mengd, F., Tiand, H., and Cai, S.M., “Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes,” Solar Energy Materials & Solar Cells, 88, 23–35(2005).
Hagfeldt, A., Didriksson, B., Palmqvist, T., Lindström, H., Södergren, S., Rensmo, H., Lindquist, S. E., “Verification of high efficiencies for the Grätzel-cell. A 7% efficient solar cell based on dye-sensitized colloidal TiO2 films,” Solar Energy Materials & Solar Cells, 31, 481–488(1994).
Hagfeldt, A. and Grätzel, M., “Molecular photovoltaics,” Acc. Chem. Res., 33, 269-277(2000).
Halme, J., “Dye-sensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests,” Master Thesis, Helsinki University of Technology(2002).
Hara, K., Dan-oh, Y., Kasada, C., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., and Arakawa, H., “Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells,” Langmuir., 20,4205-4210(2004).
Hara K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K., and Arakawa, H., “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New J. Chem., 27,783-785(2003).
Hara, K., Sayama, K., Ohga, Y., Shinpo, A., Suga, S., and Arakawa, H., “A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%,” Chem. Commun., 569-570(2001).
Hara, K., Horiguchi, T., Kinoshita, T., Sayama, K., Sugihara, H., Arakawa, H., “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Solar Energy Materials & Solar Cells, 64,115-134(2000).
He, J.A., Mosurkal, R., Samuelson, L. A., Li, L., Kumar, J., “Dye-sensitized solar cell fabricated by electrostatic layer-by-layer assembly of amphoteric TiO2 nanoparticles, “Langmuir, 19 2169 (2003).
Horiuchi, T., Miura, H, Sumioka, K., Uchida, S., “High efficiency of dye-sensitized solar cells based on metal-free Indoline dyes,” J. Am. Chem. Soc., 126, 12218-12219(2004).
Kalyanasundaram, K. and Grätzel, M., “Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coordination Chemistry Reviews, 177, 347-414(1998).
Kim, B. H., Ahn, J. H., Jeong, J. H., Jeon, Y. S., Jeon, K. O., Hwan K.S., “Preparation of TiO2 thin film on SiO2 glass by a spin coating-pyrolysis process,” Ceramics International, 32, 223–225 (2006).
Koehorst, R. B. M., Boschloo, G. K., Savenije, T. J.,Goossens, A., and Schaafsma, T. J., “Spectral sensitization of TiO2 substrates by monolayers of porphyrin heterodimers,” J. Phys. Chem. B, 104, 2371-2377(2000).
Kohle, O., Gratzel, M., Meyer, A. F., Meyer, T. B., “The photovoltaic stability of bis (isothiocyanato) ruthenium (II)-bis-2,2´- bipyridine -4,4´-dicarboxylic acid and related sensitizers,” Adv. Mater., 9, 11, 904-906(1997).
Krüger, J., Plass, R., Cevey, L., Piccirelli, M., Grätzel, M., “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett., 79, 13, 2085-2087(2001).
Kumara, G. R. A., Kaneko S., Okuya, M., Onwona-Agyeman, B., Konno, A., and Tennakone, K., “Shiso leaf pigments for dye-sensitized solid-state solar cell,” Solar Energy Materials & Solar Cells, 90, 1220-1226(2006).
Ma, T., Fang, X., Akiyama, M., Inoue K., Noma, H., Abe, E., “Properties of several types of novel counter electrodes for dye-sensitized solar cells,” J. Electroanalytical Chemistry and Photobiology A: Chemistry, 574, 77–83(2004).
Mihi, A., López-Alcaraz, F. J., and Mígueza, H., “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett,. 88, 193110(2006).
Nazeeruddin, M. K., Angelis, F. D., Fantacci, S., Sellon, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., and Grätzel M., “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc, 127, 16835-16847(2005).
Nazeeruddin, M. K., Humpbry-Baker, R., Liska, P., and Grätzel, M., “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,” J. Phys. Chem. B, 107, 8981-8987(2003).
Nazeeruddin, M. K., Kay, A., Rodicio, I., Humpbry-Baker, R., Miiller, E., Liska, P., Vlachopoulos, N., and Grätzel, M., “Conversion of light to electricity by cis-X2bis (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X= C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” J. Am. Chem. Soc, 115, 6382-6390(1993).
O’Regan, B., and Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, ”Nature 353, 737(1991).
Perera, V. P. S., Pitigala, P. K. D. D. P., Senevirathne, M. K. I., and Tennakone, K., “A solar cell sensitized with three different dyes,” Solar Energy Materials & Solar Cells, 85, 91-98(2005).
Perera, V. P. S., Pitigala, P. K. D. D. P., Jayaweera, P. V. V., Bandaranayake, K. M. P., and Tennakone, K., “Dye-sensitized solid-state photovoltaic cells based on dye multilayer-semiconductor nanostructures,” J. Phys. Chem. B, 107, 13758-13761(2003).
Pitigala, P. K. D. D. P., Senevirathne, M. K. I., Perera V. P. S. and Tennakone, K., "Dye-multilayer semiconductor nanostructures", C. R. Chimie, 9, 605-610 (2006).
Plass, R., Pelet, S., Krueger, J., Grätzel, M., “Quantum dot sensitization of organic-inorganic hybrid solar cells,” J. Phys. Chem. B 106, 7578-7580(2002).
Sayama K., Hara, K., Mori, N., Satsuki, M., Suga, S., Tsukagoshi, S., Abe, Y., Sugihara, H., and Arakawa, H., ”Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain,” Chem. Commun., 1173-1174(2002).
Sayama, K., Tsukagoshi, S., Mori, T., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., Arakawa, H., “Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes,” Solar Energy Materials & Solar Cells, 80, 47-71(2003).
Smestad, G., Bignozzi, C., Argazzi, R., “Testing of dye sensitized TiO2 solar cells I: experimental photocurrent output and conversion efficiencies,” Solar Energy Materials & Solar Cells, 32, 259-272 (1994).
Sun, B., Vorontsov, A. V., Smirniotis, P. G., “Role of platinum deposited on TiO2 in phenol photocatalytic oxidation,” Langmuir, 19, 3151-3156 (2003).
Vogel, R., Hoyer, P., Weller, H., “Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors,” J. Phys. Chem., 98, 3183-3188 (1994).
Wang, C.C. and Ying, J. Y., “Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals,” Chemistry of Materials, 11, 3113-3120(1999).
Wang, P., Zakeeruddin, S. M., Comte, P., Charvet, R., Humphry-Baker, R., and Grätzel, M., “Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals,” J. Phys. Chem. B, 107, 14336-14341(2003).
Wang, Z., Sayama, K., and Sugihara, H., “Efficient Eosin Y dye-sensitized solar sell containing Br-/Br3- electrolyte,” J. Phys. Chem. B, 109, 22449-22455(2005).
Wang, Z., Kawauchi, H., Kashima, T., Arakawa H., “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coordination Chemistry Reviews , 248,1381-1389(2004).
Wongcharee, K., Meeyoo, V., Chavadej, S., “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers,” Solar Energy Materials & Solar Cells, 91, 566-571 (2007).
Yoshida, T., Iwaya, M., Ando, H., Oekermann, T., Nonomura, K., Schlettwein, D., Wöhrlec, D., and Minoura, H., “Improved photoelectron -chemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption,” Chem. Commun., 400-401(2004).
王勝民,「新世代的綠色產品─光催化觸媒」,化工資訊,14,35(2000)。
許志偉、陳宏仁、林怡君、王立義,「有機/無機太陽能電池之現況發展」,化工,第52卷,第2期,49-58(2005)。
鄭揚霖,「雞尾酒有機色素增感太陽電池之研究」成功大學化工系碩士論文(2006)。
鄭揚霖、黃士哲、陳政廷、楊毓民,「色素增感太陽電池的發展現況」,化工技術,第15卷,第6期,156-169(2007)。
網頁介紹
色素增感太陽能電池總整理(日本特許廰):
http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/solar_cell/01_mokuji.htm
色素增感太陽能電池年表:
http://kuroppe.tagen.tohoku.ac.jp/~dsc/history-j.htm
色素太陽能電池實體介紹:
http://apchem.gifu-u.ac.jp/~pcl/special/products_j.htm#racing
太陽光電示範系統推廣網站:
http://solarpv.itri.org.tw/memb/main.aspx
矽型太陽能電池的介紹(益通光能):
http://www.e-tonsolar.com/edu.htm