簡易檢索 / 詳目顯示

研究生: 陳柏勛
Chen, Bo-Syun
論文名稱: 光纖布拉格光柵在多模梯度折射係數光纖之特性研究與製造
Fabrication and characteristics study of fiber Bragg gratings on graded-index multimode fibers
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 多模梯度折射係數光纖光纖布拉格光柵主要模態有限差分法轉換矩陣法布拉格光柵穩定雷射二極體
外文關鍵詞: Graded-index multimode fiber, Fiber Bragg gratings, Principle mode, Finite-difference method, Transfer-matrix method, Fiber Bragg gratings stabilized laser diodes
相關次數: 點閱:91下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文介紹了光纖布拉格光柵的製作方式,並且針對不同規格分別為50/125-200和62.5/125-275的多模梯度折射係數光纖所產生的光纖布拉格光柵,利用單模光纖熔接多模光纖的方式量測其反射頻譜,探討反射特性,經過理論證明可以發現反射頻譜皆與多模梯度折射係數光纖中的主要模態(Principle mode)相關,其中主要模態則與各個模態的有效折射係數相關,且當選用之相位光罩相同時,對於不同規格之多模梯度折射係數光纖其布拉格光柵所造成的反射波長會不相同。另外透過有限差分法求得出光纖模態的有效折射係數,配合轉換矩陣法進而模擬出不同種類之多模光纖布拉格光柵其反射頻譜。最後則使用多模梯度折射係數光纖布拉格光柵與輸出已使用多模階變折射係數光纖做延長之雷射二極體,探討多模光纖布拉格光柵穩定雷射二極體波長之可能性。

    This thesis is to introduce the fabrication and characteristics study of fiber Bragg gratings on graded-index fibers with different specifications of 50/125-200 and 62.5/125-275 respectively. The reflection spectrum is measured by the Single-mode to Multimode structure. By the theory, Reflection spectrum is related to the principle mode in the multimode graded-index fiber, and the principle mode is related to the effective refractive index of mode. When the selection of phase mask is same, Bragg reflection wavelength caused by the different types of GRIN fiber will be different. In addition, the effective refractive index of mode is obtained through the Finite-difference method, and the reflection spectrum of different types of graded-index multimode fiber Bragg gratings is simulated by the Transfer-matrix method. Finally, the graded-index multimode fiber Bragg gratings will be used on the laser diode which its output has been extended by step-index multimode fiber. The possibility that graded-index multimode fiber Bragg grating stabilized wavelength of the laser diode is explored.

    摘要 i 誌謝 xii 目錄 xiii 表目錄 xv 圖目錄 xvi 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 原理 5 2.1 雷射理論 5 2.2 光纖布拉格光柵(Fiber Bragg Gratings) 7 2.3 耦合模態理論(The Coupled-mode Theory) 8 2.3.1 布拉格反射波長 12 2.4 轉換矩陣法(Transfer-matrix Method) 15 2.5 有限差分法(Finite-difference Method, FDM) 20 第三章 實驗設計 23 3.1 載氫光纖製作 23 3.2 布拉格光柵製作 24 3.2.1 實驗架構 25 第四章 量測與模擬 27 4.1 Singlemode-Multimode 結構 27 4.1.1 規格62.5/125-275之梯度折射係數光纖量測 28 4.1.2 規格50/125-200之梯度折射係數光纖量測 39 4.1.3 規格10/125-08之階變折射係數雙披覆層光纖量測 46 4.2 布拉格光柵配合寬狹縫(Width-slit, Wslit)製作 50 4.2.1 規格62.5/125-275光纖配合寬狹縫之量測 51 4.3 結論 58 第五章 應用 59 5.1 多模光纖布拉格光柵穩定雷射二極體波長測試 59 5.1.1 雷射架構 59 5.1.2 量測結果 62 第六章 總結與未來展望 64 6.1 總結 64 6.2 未來展望 64 參考文獻 66 Appendix A 69

    [1] A. Einstein, "Strahlungs-emission und-absorption nach der Quantentheorie," Verh. Deutsch. Phys. Gesell., vol. 18, pp. 318-323, 1916.
    [2] A. Einstein, "Zur quantentheorie der strahlung," Phys. Z., vol. 18, p. 124, 1917.
    [3] A. L. Schawlow and C. H. Townes, "Infrared and optical masers," Physical Review, vol. 112, no. 6, p. 1940, 1958.
    [4] T. H. Maiman, "Stimulated optical radiation in ruby," 1960.
    [5] C. J. Koester and E. Snitzer, "Amplification in a fiber laser," Applied optics, vol. 3, no. 10, pp. 1182-1186, 1964.
    [6] D. Gloge, "Weakly guiding fibers," Applied optics, vol. 10, no. 10, pp. 2252-2258, 1971.
    [7] B. E. Saleh and M. C. Teich, Fundamentals of photonics. john Wiley & sons, 2019.
    [8] A. Othonos, "Fiber Bragg gratings," Review of Scientific Instruments, vol. 68, no. 12, pp. 4309-4341, 1997, doi: 10.1063/1.1148392.
    [9] K. Wanser, K. Voss, and A. Kersey, Novel fiber devices and sensors based on multimode fiber Bragg gratings (10th Optical Fibre Sensors Conference). SPIE, 1994.
    [10] T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, "Bragg Gratings in Multimode and Few-Mode Optical Fibers," J. Lightwave Technol., vol. 18, no. 2, p. 230, 2000/02/01 2000. [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-18-2-230.
    [11] C. Lu and Y. Cui, "Fiber Bragg Grating Spectra in Multimode Optical Fibers," J. Lightwave Technol., vol. 24, no. 1, p. 598, 2006/01/01 2006. [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-24-1-598.
    [12] Y. Liu, J. Lit, X. Gu, and L. Wei, "Fiber comb filters based on UV-writing Bragg gratings in graded-index multimode fibers," Opt. Express, vol. 13, no. 21, pp. 8508-8513, 2005/10/17 2005, doi: 10.1364/OPEX.13.008508.
    [13] M. J. Schmid and M. S. Müller, "Measuring Bragg gratings in multimode optical fibers," Opt. Express, vol. 23, no. 6, pp. 8087-8094, 2015/03/23 2015, doi: 10.1364/OE.23.008087.
    [14] K. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication," Applied physics letters, vol. 32, no. 10, pp. 647-649, 1978.
    [15] G. Meltz, W. W. Morey, and W. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Optics letters, vol. 14, no. 15, pp. 823-825, 1989.
    [16] A. Anedda, C. M. Carbonaro, R. Corpino, and A. Serpi, "Absorption spectrum of Ge-doped silica samples and fiber preforms in the vacuum ultraviolet region," Journal of Non-Crystalline Solids, vol. 280, no. 1, pp. 281-286, 2001/02/01/ 2001, doi: https://doi.org/10.1016/S0022-3093(00)00386-0.
    [17] K. Okamoto, "Chapter 4 - Coupled mode theory," in Fundamentals of Optical Waveguides (Second Edition), K. Okamoto Ed. Burlington: Academic Press, 2006, pp. 159-207.
    [18] A. Yariv and P. Yeh, Optical waves in crystals. Wiley New York, 1984.
    [19] R. Olshansky, "Mode Coupling Effects in Graded-Index Optical Fibers," Applied Optics, vol. 14, no. 4, pp. 935-945, 1975/04/01 1975, doi: 10.1364/AO.14.000935.
    [20] X. Yang et al., "The characteristics of fiber slanted gratings in multimode fiber," Optics Communications, vol. 229, no. 1, pp. 161-165, 2004/01/02/ 2004, doi: https://doi.org/10.1016/j.optcom.2003.10.022.
    [21] R. Kashyap, "Chapter 4 - Theory of Fiber Bragg Gratings," in Fiber Bragg Gratings (Second Edition), R. Kashyap Ed. Boston: Academic Press, 2010, pp. 119-187.
    [22] T. Erdogan, "Fiber grating spectra," J. Lightwave Technol., vol. 15, no. 8, pp. 1277-1294, 1997, doi: 10.1109/50.618322.
    [23] J.-M. Liu, "Optical Wave Propagation," in Principles of Photonics, J.-M. Liu Ed. Cambridge: Cambridge University Press, 2016, pp. 66-140.
    [24] R. Kashyap, "Chapter 3 - Fabrication of Bragg Gratings," in Fiber Bragg Gratings (Second Edition), R. Kashyap Ed. Boston: Academic Press, 2010, pp. 53-118.
    [25] Q. Wang, G. Farrell, and W. Yan, "Investigation on Single-Mode–Multimode–Single-Mode Fiber Structure," J. Lightwave Technol., vol. 26, no. 5, pp. 512-519, 2008/03/01 2008. [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-26-5-512.
    [26] D. Li, Y. Gong, and Y. Wu, "Tilted fiber Bragg grating in graded-index multimode fiber and its sensing characteristics," Photonic Sensors, vol. 3, no. 2, pp. 112-117, 2013/06/01 2013, doi: 10.1007/s13320-013-0107-6.
    [27] C. R. Giles, T. Erdogan, and V. Mizrahi, "Simultaneous wavelength-stabilization of 980-nm pump lasers," IEEE Photonics Technology Letters, vol. 6, no. 8, pp. 907-909, 1994, doi: 10.1109/68.313048.
    [28] B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, and T. N. Demayo, "Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings," Electronics Letters, vol. 30, no. 25, pp. 2147-2149. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_19941437
    [29] J. Archambault and S. G. Grubb, "Fiber gratings in lasers and amplifiers," J. Lightwave Technol., vol. 15, no. 8, pp. 1378-1390, 1997, doi: 10.1109/50.618351.
    [30] R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol., vol. 4, p. 1655, January 01, 1986 1986, doi: 10.1109/jlt.1986.1074666.
    [31] F. N. Timofeev and R. Kashyap, "High-power, ultra-stable, single-frequency operation of a long, doped-fiber external-cavity, grating-semiconductor laser," Opt. Express, vol. 11, no. 6, pp. 515-520, 2003/03/24 2003, doi: 10.1364/OE.11.000515.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE