簡易檢索 / 詳目顯示

研究生: 陳則瑋
Chen, Tse-Wei
論文名稱: 建立台灣蘭嶼豬在心臟再生治療之心肌梗塞模組
Lanyu Pig Model of Myocardial Infarction for Cardiac Regeneration
指導教授: 劉秉彥
Liu, Ping-Yen
劉嚴文
Liu, Yen-Wen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 44
中文關鍵詞: 蘭嶼豬心肌梗塞缺血再灌流心臟再生細胞治療
外文關鍵詞: Lanyu pig, Myocardial infarction, Ischemia-reperfusion, Cardiac regeneration, Large-animal model
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蘭嶼豬為台灣特有的小型豬種,其解剖與生理特性表現具有作為心肌梗塞大型動物模式的潛力,特別適用於心臟再生療法相關研究。本研究旨在建立一套兼具重現性且存活率高的蘭嶼豬心肌梗塞模型,作為模擬梗塞後心臟衰竭之病理狀態。共計有十七隻蘭嶼豬接受可植入式心律監測器的植入,並進行冠狀動脈左前降支球囊阻斷之缺血及再灌流手術。研究團隊於心肌梗塞誘發前後,透過經胸前心臟超音波及壓力容積環分析評估心臟功能,並於心肌梗塞後執行心肌內細胞注射,並持續追蹤其功能變化。

    本模型於實驗期間達成94.1%的存活率。左心室射出分率於心肌梗塞後顯著下降,包含心臟超音波由69.4%降至40.0%;壓力容積環分析則是由66.1%降至46.2%。其他指標如心搏出量、做功量與心肌收縮力相關參數亦顯著下降。值得注意的是,未觀察到持續性惡性心律不整。整體來說梗塞範圍穩定,並持續造成心肌收縮功能障礙,顯示本模型具良好再現性與實驗價值。

    本研究證實蘭嶼豬為建立高存活率且穩定的心肌梗塞模型之理想動物平台,適合用於再生療法之前臨床評估。其體型小、基因穩定性高且生理反應穩定,具備成為轉譯性心臟研究動物模式的優勢。

    Lanyu pigs, a unique Taiwanese miniature breed, may offer advantages as a large-animal model for myocardial infarction (MI) studies, particularly in regenerative therapy research. This study aimed to establish and characterize a reproducible and survival-favorable MI model in Lanyu pigs, mimicking post-infarction heart failure. Seventeen Lanyu pigs underwent implantation of insertable cardiac monitors, followed by ischemia-reperfusion surgery via 90-minute balloon occlusion of the mid-left anterior descending artery. Cardiac function was evaluated pre- and post-MI using transthoracic echocardiography and pressure-volume (PV) loop analysis. Intramyocardial cell therapy was performed after infarction, and functional parameters were tracked longitudinally.

    The model achieved a 94.1% survival rate. Left ventricular ejection fraction declined significantly post-MI (echocardiography: 69.4% to 40.0%; PV loop: 66.1% to 46.2%). Other parameters such as stroke volume, stroke work, and myocardial contractility indices also showed significant reduction. Importantly, no sustained malignant arrhythmias were observed. The infarction was consistent and resulted in persistent contractile impairment, confirming the model's validity.

    This study demonstrates that Lanyu pigs are suitable for modeling MI with high survival and reproducibility, making them a valuable platform for evaluating regenerative therapies. Their small size, genetic stability, and favorable physiological response position them as an ideal model for translational cardiac research.

    中文摘要 i Abstract ii Acknowledgement iii Table of contents iv List of Tables vi List of Figures vii Chapter 1. INTRODUCTION 1 1.1 Ischemic heart disease 1 1.2 Post-Infarction HF 1 1.3 Limitations of Current Therapies 2 1.4 Regenerative Strategies 3 1.5 Animal Models 4 1.6 Porcine Model for AMI 4 1.7 Challenges Associated with the Porcine Model 5 1.8 Conventional Porcine Models 6 1.9 Advantages of the Lanyu Miniature Pig 7 1.10 Rationale for Developing a Translational Porcine Model 7 Chapter 2. MATERIALS AND METHODS 9 2.1 Animal Model and Ethical Approval 9 2.2 Timeline of the Study Protocol 9 2.3 Implantation of Insertable Cardiac Monitor 9 2.4 Induction of MI via Ischemia-Reperfusion Surgery 10 2.5 Step-by-Step Coronary Catheterization for LAD Occlusion 10 2.6 Intramyocardial Cell Injection 11 2.7 Cardiac Echocardiographic Function Assessment 12 2.8 Statistical Analysis 12 Chapter 3. RESULT AND DISCUSSION 13 3.1 Animal Characteristics 13 3.2 Functional Decline Following Myocardial Infarction 13 3.3 Hemodynamic Confirmation 13 3.4 Cardiac Rhythm Monitoring 14 3.5 Lanyu Pigs as a Robust Large-Animal MI Model 14 3.6 Ischemia Duration and Infarct Induction Strategy 14 3.7 Echocardiography and PV Loop Analysis 15 3.8 PV Loop-Derived Contractility Indices 15 3.9 Limitations 16 Chapter 4. CONCLUSION 17 Reference 18 Tables 22 Figures 24

    Alhejailan, R. S., Garoffolo, G., Raveendran, V. V., & Pesce, M. (2023). Cells and Materials for Cardiac Repair and Regeneration. J Clin Med, 12(10). doi:10.3390/jcm12103398
    Bois, A., Grandela, C., Gallant, J., Mummery, C., & Menasche, P. (2025). Revitalizing the heart: strategies and tools for cardiomyocyte regeneration post-myocardial infarction. NPJ Regen Med, 10(1), 6. doi:10.1038/s41536-025-00394-2
    Carvalho, A. B., Kasai-Brunswick, T. H., & Campos de Carvalho, A. C. (2024). Advanced cell and gene therapies in cardiology. EBioMedicine, 103, 105125. doi:10.1016/j.ebiom.2024.105125
    Chen, Y., Shao, D. B., Zhang, F. X., Zhang, J., Yuan, W., Man, Y. L., . . . Cao, K. J. (2013). Establishment and evaluation of a swine model of acute myocardial infarction and reperfusion-ventricular fibrillation-cardiac arrest using the interventional technique. Journal of the Chinese Medical Association, 76(9), 491-496. doi:10.1016/j.jcma.2013.05.013
    Chepeleva, E. V. (2023). Cell Therapy in the Treatment of Coronary Heart Disease. International Journal of Molecular Sciences, 24(23). doi:10.3390/ijms242316844
    de Jong, R., van Hout, G. P., Houtgraaf, J. H., Kazemi, K., Wallrapp, C., Lewis, A., . . . Duckers, H. J. (2014). Intracoronary infusion of encapsulated glucagon-like peptide-1-eluting mesenchymal stem cells preserves left ventricular function in a porcine model of acute myocardial infarction. Circulation: Cardiovascular Interventions, 7(5), 673-683. doi:10.1161/CIRCINTERVENTIONS.114.001580
    Esmaeilzadeh, M., Parsaee, M., & Maleki, M. (2013). The role of echocardiography in coronary artery disease and acute myocardial infarction. J Tehran Heart Cent, 8(1), 1-13. Retrieved from https://pmc.ncbi.nlm.nih.gov/articles/PMC3587668/pdf/jthc-8-1.pdf
    Hashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews: Cardiology, 15(10), 585-600. doi:10.1038/s41569-018-0036-6
    Hsiao, L. C., Carr, C., Chang, K. C., Lin, S. Z., & Clarke, K. (2013). Stem cell-based therapy for ischemic heart disease. Cell Transplantation, 22(4), 663-675. doi:10.3727/096368912X655109
    Huenges, K., Pokorny, S., Berndt, R., Cremer, J., & Lutter, G. (2017). Transesophageal Echocardiography in Swine: Establishment of a Baseline. Ultrasound in Medicine and Biology, 43(5), 974-980. doi:https://doi.org/10.1016/j.ultrasmedbio.2016.12.011
    Kadota, S., Tanaka, Y., & Shiba, Y. (2020). Heart regeneration using pluripotent stem cells. Journal of Cardiology, 76(5), 459-463. doi:10.1016/j.jjcc.2020.03.013
    Kanelidis, A. J., Premer, C., Lopez, J., Balkan, W., & Hare, J. M. (2017). Route of Delivery Modulates the Efficacy of Mesenchymal Stem Cell Therapy for Myocardial Infarction: A Meta-Analysis of Preclinical Studies and Clinical Trials. Circulation Research, 120(7), 1139-1150. doi:10.1161/CIRCRESAHA.116.309819
    Kim, Y. S., Kim, N. Y., Bae, I.-H., Park, J. K., Park, D. S., Shim, J. W., . . . Jeong, M. H. (2019). Novel porcine model of acute myocardial infarction using polyethylene terephthalate. Journal of Biomedical Translational Research, 20(2), 44-52. doi:10.12729/jbtr.2019.20.2.044
    Liu, Y., Wang, M., Yu, Y., Li, C., & Zhang, C. (2023). Advances in the study of exosomes derived from mesenchymal stem cells and cardiac cells for the treatment of myocardial infarction. Cell Commun Signal, 21(1), 202. doi:10.1186/s12964-023-01227-9
    Liu, Y. W., Chen, B., Yang, X., Fugate, J. A., Kalucki, F. A., Futakuchi-Tsuchida, A., . . . Murry, C. E. (2018). Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nature Biotechnology, 36(7), 597-605. doi:10.1038/nbt.4162
    McCall, F. C., Telukuntla, K. S., Karantalis, V., Suncion, V. Y., Heldman, A. W., Mushtaq, M., . . . Hare, J. M. (2012). Myocardial infarction and intramyocardial injection models in swine. Nature Protocols, 7(8), 1479-1496. doi:10.1038/nprot.2012.075
    Monguio-Tortajada, M., Prat-Vidal, C., Martinez-Falguera, D., Teis, A., Soler-Botija, C., Courageux, Y., . . . Galvez-Monton, C. (2022). Acellular cardiac scaffolds enriched with MSC-derived extracellular vesicles limit ventricular remodelling and exert local and systemic immunomodulation in a myocardial infarction porcine model. Theranostics, 12(10), 4656-4670. doi:10.7150/thno.72289
    Nakamura, K., Neidig, L. E., Yang, X., Weber, G. J., El-Nachef, D., Tsuchida, H., . . . Murry, C. E. (2021). Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes. Stem Cell Reports, 16(10), 2473-2487. doi:10.1016/j.stemcr.2021.08.005
    Rahman, A., Li, Y., Chan, T. K., Zhao, H., Xiang, Y., Chang, X., . . . Ong, S. B. (2023). Large animal models of cardiac ischemia-reperfusion injury: Where are we now? Zool Res, 44(3), 591-603. doi:10.24272/j.issn.2095-8137.2022.487
    Romagnuolo, R., Masoudpour, H., Porta-Sanchez, A., Qiang, B., Barry, J., Laskary, A., . . . Laflamme, M. A. (2019). Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate the Infarcted Pig Heart but Induce Ventricular Tachyarrhythmias. Stem Cell Reports, 12(5), 967-981. doi:10.1016/j.stemcr.2019.04.005
    Selvakumar, D., Reyes, L., & Chong, J. J. H. (2022). Cardiac Cell Therapy with Pluripotent Stem Cell-Derived Cardiomyocytes: What Has Been Done and What Remains to Do? Current Cardiology Reports, 24(5), 445-461. doi:10.1007/s11886-022-01666-9
    Shin, H. S., Shin, H. H., & Shudo, Y. (2021). Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Front Bioeng Biotechnol, 9, 673683. doi:10.3389/fbioe.2021.673683
    Spannbauer, A., Traxler, D., Zlabinger, K., Gugerell, A., Winkler, J., Mester-Tonczar, J., . . . Gyongyosi, M. (2019). Large Animal Models of Heart Failure With Reduced Ejection Fraction (HFrEF). Front Cardiovasc Med, 6, 117. doi:10.3389/fcvm.2019.00117
    Stougiannou, T. M., Christodoulou, K. C., Dimarakis, I., Mikroulis, D., & Karangelis, D. (2024). To Repair a Broken Heart: Stem Cells in Ischemic Heart Disease. Current Issues in Molecular Biology, 46(3), 2181-2208. doi:10.3390/cimb46030141
    Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Anderson, C. A. M., Arora, P., Avery, C. L., . . . Stroke Statistics, S. (2023). Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation, 147(8), e93-e621. doi:10.1161/CIR.0000000000001123
    Vo, Q. D., Saito, Y., Nakamura, K., Iida, T., & Yuasa, S. (2024). Induced Pluripotent Stem Cell-Derived Cardiomyocytes Therapy for Ischemic Heart Disease in Animal Model: A Meta-Analysis. International Journal of Molecular Sciences, 25(2). doi:10.3390/ijms25020987
    Wei, Y., Walcott, G., Nguyen, T., Geng, X., Guragain, B., Zhang, H., . . . Zhang, J. (2025). Follistatin From hiPSC-Cardiomyocytes Promotes Myocyte Proliferation in Pigs With Postinfarction LV Remodeling. Circulation Research, 136(2), 161-176. doi:10.1161/CIRCRESAHA.124.325562
    Yap, L., Chong, L. Y., Tan, C., Adusumalli, S., Seow, M., Guo, J., . . . Tryggvason, K. (2023). Pluripotent stem cell-derived committed cardiac progenitors remuscularize damaged ischemic hearts and improve their function in pigs. NPJ Regen Med, 8(1), 26. doi:10.1038/s41536-023-00302-6
    Yu, Y., Tham, S. K., Roslan, F. F., Shaharuddin, B., Yong, Y. K., Guo, Z., & Tan, J. J. (2023). Large animal models for cardiac remuscularization studies: A methodological review. Front Cardiovasc Med, 10, 1011880. doi:10.3389/fcvm.2023.1011880

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE