| 研究生: |
吳晉源 Wu, Jin-Yuan |
|---|---|
| 論文名稱: |
自主式水下載具X型舵操縱控制與性能分析 Control Methods and Performance Analysis of an Autonomous Underwater Vehicle with X-Rudder |
| 指導教授: |
王舜民
Wang, Shun-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 自主式水下載具 、X-Rudder 、PID控制 、都卜勒測速儀 |
| 外文關鍵詞: | X-Rudder, Autonomous Underwater Vehicle, PID Control, Doppler Velocity Log |
| 相關次數: | 點閱:31 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科學研究和國防產業的發展,水下載具的應用和需求日益增加,發展突飛猛進。其中,自主式水下載具(Autonomous Underwater Vehicle, AUV)不需要連接電纜且具備自主執行任務能力,適合執行長期性或身處危險環境的工作。近年來因電腦和自動控制系統的進步,X型艉舵被廣泛採用,相較傳統的十字形舵板,具有更好的機動性能和容許損壞的能力。本研究的目的在於了解X型艉舵載具的控制程式和機動性能。
本研究載具分為前段、中段與後段,前段配置都卜勒測速儀和深度計,並用卡爾曼濾波器將蒐集到的資料進行處理,中段架設微型電腦和myRIO嵌入式系統;後段為推進器和舵板架構。在載具機電系統整合中,運用LabVIEW軟體及myRIO開發整合系統。
控制程式方面,本研究分為航向控制和深度控制,航向控制使用PI算法進行,PI控制器將航向誤差轉換為舵板旋轉信號,改變載具航向。深度控制程式則是利用深度值及縱搖姿態進行兩層的PI控制,一開始為深度值PI控制,在深度值小於一定值時,改為控制縱搖姿態來固定深度。本研究將使用此載具進行各項不同項目測試,包括控制實驗及多項操縱性能實驗,以此驗證控制程式及機動性能。
The demand for underwater vehicles has been rapidly increasing due to advancements in scientific research and the defense industry. Autonomous Underwater Vehicles (AUVs) are particularly well-suited for long-term operations or tasks in hazardous environments as they do not require tethered power cables and possess autonomous mission execution capabilities. These vehicles have been increasingly equipped with X-shaped stern rudders due to their superior maneuverability and greater damage tolerance than traditional cruciform rudders.
This study aims to understand the control methods and maneuvering performance of vehicles with X-shaped stern rudders. The AUV vehicle is divided into the front, middle, and rear sections. The front section is equipped with a Doppler Velocity Log (DVL) and a depth sensor, and the depth data is processed using a Kalman filter. The middle section houses a microcomputer and a myRIO embedded system, while the rear section contains the thrusters and the X-shaped rudders. The system development and integration in the electromechanical system are implemented using LabVIEW software and myRIO.
The control program is divided into two parts: heading control and depth control. Heading control employs a Proportional-Integral (PI) algorithm to convert heading errors into rudder rotation signals, altering the AUV's heading. The depth control uses a two-layer PI control based on depth value and pitch angle, where a PI algorithm is used to control the pitch angle to maintain a stable depth within a small range of depth error.
The X-Rudder AUV will undergo various tests, including control experiments and multiple maneuverability tests, to validate the control program and evaluate the vehicle's performance.
[1]"BlueROV2." https://bluerobotics.com/store/rov/bluerov2/ (accessed JULY 3, 2024).
[2]"REMUS 100 AUV." https://www.businesswire.com/news/home/20160314005318/en/Hydroid-Introduces-the-New-Generation-REMUS-100-AUV (accessed July 3, 2024).
[3]"海鯤級潛艇." https://www.navalnews.com/ (accessed July 3, 2024).
[4]Allotta, B. et al., "A new AUV navigation system exploiting unscented Kalman filter," Ocean Engineering, vol. 113, pp. 121-132, 2016.
[5]Ameer, Y., U. Kamal, and A. Y. Memon, "Design of X-rudder AUV’s Motion Control using Sliding Mode Control with Optimal Rudder Allocation Technique," presented at the 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2022.
[6]Bayusari, I., A. M. Alfarino, H. Hikmarika, Z. Husin, S. Dwijayanti, and B. Y. Suprapto, "Position control system of autonomous underwater vehicle using PID controller," in 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2021: IEEE, pp. 139-143.
[7]HAN Zhao-Lin, Z. Z.-Z., WANG Long- Jin, "The Effect Analysis of Rudder between X-Form and Cross-Form," 2017, doi: 10.23977/iccsc.2017.1003.
[8]Mudassir, M., U. Kamal, H. Aslam, and A. Gulzar, "Robust Propulsion Control for a Class of X-rudder Autonomous Underwater Vehicle," presented at the 2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE), 2022.
[9]Nakamura, M. and T. Hyakudome, "Motion Simulations of AUV “YUMEIRUKA” with X-rudder," in ISOPE International Ocean and Polar Engineering Conference, 2019: ISOPE, pp. ISOPE-I-19-168.
[10]Wang, W., Y. Chen, Y. Xia, G. Xu, W. Zhang, and H. Wu, "A Fault-Tolerant Steering Prototype for X-Rudder Underwater Vehicles," Sensors (Basel), vol. 20, no. 7, Mar 25 2020, doi: 10.3390/s20071816.
[11]Wu, T.-H., S.-M. Wang, and W.-W. Chang, "Design and Image Tracking Control of Underwater Manipulator," in 2023 5th International Conference on Control and Robotics (ICCR), 2023: IEEE, pp. 210-214.
[12]Xia, Y., K. Xu, W. Wang, G. Xu, X. Xiang, and Y. Li, "Optimal robust trajectory tracking control of a X-rudder AUV with velocity sensor failures and uncertainties," Ocean Engineering, vol. 198, p. 106949, 2020.
[13]Yuan, J. P., Y. Y. She, Y. H. Zhang, J. Xu, and L. Wan, "Research on <i>L</i><sub>1</sub> Adaptive Control of Autonomous Underwater Vehicles with X-Rudder," (in English), J. Mar. Sci. Eng., Article vol. 11, no. 10, p. 19, Oct 2023, Art no. 1946, doi: 10.3390/jmse11101946.
[14]Zhang, Y., Y. Li, G. Zhang, J. Zeng, and L. Wan, "Design of X-rudder autonomous underwater vehicle’s quadruple-rudder allocation with Lévy flight character," International Journal of Advanced Robotic Systems, vol. 14, no. 6, p. 1729881417741738, 2017.
[15]Zhang, Y. H., Y. M. Li, Y. S. Sun, J. F. Zeng, and L. Wan, "Design and simulation of X-rudder AUV's motion control," (in English), Ocean Engineering, Article vol. 137, pp. 204-214, Jun 2017, doi: 10.1016/j.oceaneng.2017.03.048.
[16]許易凱, "X型舵應用於潛艇操縱運動之模擬," 國立成功大學系統與船舶機電工程學系碩士論文,2022.
[17]郭怡靜, "波浪效應對近水面潛艇操縱性能之影響," 國立成功大學系統與船舶機電工程學系碩士論文,2023.
[18]陳彥璋, "雙眼立體視覺測距與影像處理於自主式水下載具碰撞之評估," 國立成功大學系統與船舶機電工程學系碩士論文,2017.
[19]黃邦毓, "應用 LabVIEW 進行前向聲納影像重建與環境建構之研究," 國立成功大學系統與船舶機電工程學系碩士論文,2022.
[20]潘弘鈞, "自主式水下載具開發與操縱性能分析," 國立成功大學系統與船舶機電工程學系碩士論文,2022.