| 研究生: |
李政翰 Lee, Cheng-Han |
|---|---|
| 論文名稱: |
海洋資源的綠色循環-海淡鹵水資源循環與應用 Green Circulation of Marine Resources-Recovery and Application of Resources from Desalination Brine |
| 指導教授: |
陳偉聖
Chen, Wei-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 380 |
| 中文關鍵詞: | 海淡鹵水 、碳捕集與再利用 、濕法冶金 、資源循環 、物質流分析 |
| 外文關鍵詞: | Desalination Brine, Carbon Capture and Utilization, Hydrometallurgy, Resources Circulation, Material Flow Analysis |
| 相關次數: | 點閱:82 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為了降低海水淡化鹵水(以下簡稱海淡鹵水)所造成的環境危害,故以海水淡化過程中產生的副產物-鹵水為標的,進行循環經濟、資源循環與綠色化學的應用。整體研究架構可分為四個部份:海淡鹵水的分析及比較、鹵水應用於二氧化碳捕集與再利用、鹵水中有價資源(硼、銅、銫、銣、鋰)之分離純化與特定元素物質流分析。
第一部份將針對鹵水的基本特性,如元素組成、pH值、ORP值、導電度、等進行分析,並與世界各地的鹵水進行比較。由於此研究與歐盟Sea4value計畫配合,故可透過比較得知臺灣海淡廠的鹵水與世界其他海淡廠的差異,後續再經由比對其他資料,即能獲取可能原因。
分析海淡鹵水後,會利用其含有高濃度鈣、鎂的特性進行碳捕集與再利用。此部份首先利用pH Swing Method將pH值調整至9-14,以依序沉澱氫氧化鎂與氫氧化鈣,接著再將兩者分別透過胺類載體法及Modified Solvay Process捕集二氧化碳,並析出鎂、鈣、鈉化合物。
在第二部份析出鹵水內部分雜質後,將有利於後續稀有資源的分離純化,故本研究於第三部份利用濕法冶金技術,如溶媒萃取法、離子液體萃取法、離子交換法、氫化分解法等,進行硼、銅、銫、銣、鋰的資源循環。為了確認分離純化之資源具有實際應用價值,本研究會進行各式分析,並以所得之銣資源為例,將其合成為銣釩催化劑,運用至硫酸製備中。
獲取海淡鹵水內的資源後,本研究設定從碳捕集與再利用開始至循環有價資源的系統邊界,並透過特定元素物質流分析盤查硼、銅、銫、銣、鋰五種元素於每個步驟中的元素濃度,以得到實驗流程中的應關注熱點。接著再從所有應關注熱點中找尋元素流失最多的程序,以思考在後續研究中如何將其改善。
經由完整資源循環與應用程序後,所獲得的實驗結果為:臺灣澎湖的海淡鹵水具有較高濃度的鈣、鎂離子、較低TDS與較高pH值的特性;透過胺類載體法及Modified Solvay Process,1公升海淡鹵水可捕集7.24g二氧化碳;溶媒萃取與離子液體萃取分別較適合硼及銅的回收;溶媒萃取法、離子液體萃取法及離子交換法三者則皆可運用於銫和銣的循環;透過氫化分解法所獲得的碳酸鋰純度達95.9%;銣釩催化劑可在低溫情況下有效催化二氧化硫轉換為三氧化硫;藉由物質流分析得知共沉澱與共提煉是造成元素流失的兩大因素。
綜觀而言,整體研究希冀解決海淡鹵水所形成之環境問題,並提高其經濟價值,故以碳捕集與再利用及資源循環為研究主軸,以達到循環經濟中“提高資源使用效率的同時,顯著降低環境風險及生態破壞”和SDGs 17中“保育及永續利用海洋與海洋資源,以確保永續發展”的理念。
To reduce the environmental hazards caused by desalination brine, this research aims to utilize the concepts of circular economy, resources circulation, and green chemistry to treat brine from the desalination process. The research can be divided into four parts: analysis and comparison of brine, application of brine for carbon capture and utilization, separation and purification of valuable resources (boron, copper, cesium, rubidium, and lithium) from brine, and substance flow analysis.
In the first part, the basic properties of brine, such as elemental composition, pH value, ORP value, conductivity, and so on, are analyzed and compared with brine from desalination plants worldwide. Since this research cooperates with the Sea4value project of the European Union, the difference in brine between Taiwan and other countries can be realized through comparison. Subsequently, probable causes can be obtained by juxtaposing other information.
Carbon capture and utilization is conducted in the second part by taking advantage of the high concentration of calcium and magnesium in brine. The pH value is initially adjusted to 9-14 by the pH Swing Method, and magnesium hydroxide and calcium hydroxide precipitate sequentially. They are then employed to capture carbon dioxide through the amine carrier method and the Modified Solvay Process, respectively. After carbon capture and utilization, magnesium, calcium, and sodium compounds will precipitate.
Once the impurities in brine precipitate in the second process, it will be beneficial to separate and purify critical resources. Therefore, hydrometallurgy techniques such as solvent extraction, ionic-liquid extraction, ion exchange, and hydrogenation-decomposition methods are applied to recover boron, copper, cesium, rubidium, and lithium resources from brine. To confirm that the separated and purified resources have industrial application value, various analyses will be carried out. Besides, rubidium will be an example to synthesize into a rubidium-vanadium catalyst, which can be used to produce sulfuric acid.
The system boundary is set up from the procedures of carbon capture and utilization to the circulation of valuable resources after obtaining the resources in brine. Substance flow analysis (SFA) is used to investigate the concentrations of boron, copper, cesium, rubidium, and lithium. The concentrations of five elements in each step will be surveyed to find the hotspots in the experimental process. As all the hotspots are explored, programs with the highest loss will be improved in the follow-up research.
The results obtained through a complete process of resources circulation and application are as follows: The desalination brine from Penghu, Taiwan, has the characteristics of higher concentrations of magnesium and calcium, lower TDS, and higher pH value. 1 L of brine can capture 7.24 g of CO2 through the amine carrier method and the Modified Solvay Process. The solvent extraction and ionic liquid extraction systems are the most suitable for the circulation of boron and copper, separately. For cesium and rubidium, solvent extraction, ionic liquid extraction, and ion exchange systems can be applied under different situations. Li2CO3 with 95.9% purity can be acquired through the hydrogenation-decomposition method. The rubidium-vanadium catalyst can convert SO2 to SO3 efficiently at a lower temperature. Through SFA, it can be understood that critical resources are mainly lost due to co precipitation and co-extraction.
To sum up, this research is dedicated to solving the environmental problems caused by desalination brine and enhancing its economic value. Therefore, carbon capture and utilization and resources circulation will be the main parts to achieve the goal of “Improving the efficiency of resource usage while significantly reducing the environmental impact” in the Circular Economy and “Conserve and sustainably use the oceans, seas, and marine resources for sustainable development” in SDGs 17.
[1] Bolin, B., & Eriksson, E. (1959). Changes in the carbon dioxide content of the atmosphere and sea due to fossil fuel combustion. The atmosphere and the sea in motion, 1, 30-142.
[2] Lee, Z. H., Sethupathi, S., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2013). An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers. Renewable and Sustainable Energy Reviews, 28, 71-81.
[3] Visser, P. M., Verspagen, J. M., Sandrini, G., Stal, L. J., Matthijs, H. C., Davis, T. W., ... & Huisman, J. (2016). How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae, 54, 145-159.
[4] Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in carbon capture (pp. 3-28). Woodhead Publishing.
[5] Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V., & Kang, S. M. (2019). The state of desalination and brine production: A global outlook. Science of the Total Environment, 657, 1343-1356.
[6] Congjie, G., & Guohua, C. (2004). Desalination Technology and Engineering Handbook.
[7] Mejía, A., Nucete Hubner, M., Ron Sánchez, E., & Doria, M. (2012). The United Nations World Water Development Report–N° 4–Water and Sustainability (A Review of Targets, Tools and Regional Cases).
[8] Ghaffour, N. (2009). The challenge of capacity-building strategies and perspectives for desalination for sustainable water use in MENA. Desalination and Water Treatment, 5(1-3), 48-53.
[9] Hernández-Sánchez, J. C., Boluda-Botella, N., & Sánchez-Lizaso, J. L. (2017). The role of desalination in water management in southeast Spain. Desalination and Water Treatment, 76, 71-76.
[10] Gude, V. G. (2017). Desalination and water reuse to address global water scarcity. Reviews in Environmental Science and Bio/Technology, 16(4), 591-609.
[11] Wangnick, K. (2002). IDA Worldwide Desalting Plants Inventory Report No. 17, produced by Wangnick Consulting for IDA. Gnarrenburg, Germany.
[12] Khawaji, A. D., Kutubkhanah, I. K., & Wie, J. M. (2008). Advances in seawater desalination technologies. Desalination, 221(1-3), 47-69.
[13] Bazargan, A. (Ed.). (2018). A multidisciplinary introduction to desalination. Stylus Publishing, LLC.
[14] Kucera, J. (2019). Desalination: water from water. John Wiley & Sons.
[15] Kress, N. (2019). Marine impacts of seawater desalination: science, management, and policy. Elsevier.
[16] Panagopoulos, A. (2021). Water-energy nexus: desalination technologies and renewable energy sources. Environmental Science and Pollution Research, 28(17), 21009-21022.
[17] Soliman, M. N., Guen, F. Z., Ahmed, S. A., Saleem, H., Khalil, M. J., & Zaidi, S. J. (2021). Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Safety and Environmental Protection, 147, 589-608.
[18] Dindi, A., Quang, D. V., AlNashef, I., & Abu-Zahra, M. R. (2018). A process for combined CO2 utilization and treatment of desalination reject brine. Desalination, 442, 62-74.
[19] Kumar, A., Phillips, K. R., Thiel, G. P., Schröder, U., & Lienhard, J. H. (2019). Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nature Catalysis, 2(2), 106-113.
[20] International Desalination Association. (2019). The IDA water security handbook 2019–2020.
[21] Panagopoulos, A., & Haralambous, K. J. (2020). Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) strategies for wastewater management and resource recovery–Analysis, challenges and prospects. Journal of Environmental Chemical Engineering, 8(5), 104418.
[22] Ismail, F., Khulbe, K. C., & Matsuura, T. (2018). Reverse osmosis. Elsevier.
[23] Panagopoulos, A. (2022). Brine management (saline water & wastewater effluents): Sustainable utilization and resource recovery strategy through Minimal and Zero Liquid Discharge (MLD & ZLD) desalination systems. Chemical Engineering and Processing-Process Intensification, 108944.
[24] Loganathan, P., Naidu, G., & Vigneswaran, S. (2017). Mining valuable minerals from seawater: a critical review. Environmental Science: Water Research & Technology, 3(1), 37-53.
[25] Pramanik, B. K., Shu, L., & Jegatheesan, V. (2017). A review of the management and treatment of brine solutions. Environmental science: water research & technology, 3(4), 625-658.
[26] Ji, P. Y., Ji, Z. Y., Chen, Q. B., Liu, J., Zhao, Y. Y., Wang, S. Z., ... & Yuan, J. S. (2018). Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Separation and Purification Technology, 207, 1-11.
[27] Lattemann, S., & Höpner, T. (2008). Environmental impact and impact assessment of seawater desalination. Desalination, 220(1-3), 1-15.
[28] Amma, L. V., & Ashraf, F. (2020). Brine management in reverse osmosis desalination: a UAE perspective. In 2020 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-6). IEEE.
[29] Katal, R., Shen, T. Y., Jafari, I., Masudy-Panah, S., & Farahani, M. H. D. A. (2020). An overview on the treatment and management of the desalination brine solution. Desalination-challenges and opportunities.
[30] Omerspahic, M., Al Jabri, H., & Saadaoui, I. (2022). Characteristics of Desalination Brine and Its Impacts on Marine Chemistry and Health, With Emphasis on the Persian/Arabian Gulf: A Review. Frontiers in Marine Science, 525.
[31] Panagopoulos, A., Haralambous, K. J., & Loizidou, M. (2019). Desalination brine disposal methods and treatment technologies-A review. Science of the Total Environment, 693, 133545.
[32] Benaissa, M., Rouane-Hacene, O., Boutiba, Z., Guibbolini-Sabatier, M. E., & Faverney, C. R. D. (2017). Ecotoxicological impact assessment of the brine discharges from a desalination plant in the marine waters of the Algerian west coast, using a multibiomarker approach in a limpet, Patella rustica. Environmental Science and Pollution Research, 24(31), 24521-24532.
[33] Belkin, N., Rahav, E., Elifantz, H., Kress, N., & Berman-Frank, I. (2017). The effect of coagulants and antiscalants discharged with seawater desalination brines on coastal microbial communities: A laboratory and in situ study from the southeastern Mediterranean. Water research, 110, 321-331.
[34] El-Naas, M. H. (2011). Reject brine management. Desalination, trends and technologies, 237-252.
[35] Panagopoulos, A. (2020). Process simulation and techno‐economic assessment of a zero liquid discharge/multi‐effect desalination/thermal vapor compression (ZLD/MED/TVC) system. International Journal of Energy Research, 44(1), 473-495.
[36] Bello, A. S., Zouari, N., Da'ana, D. A., Hahladakis, J. N., & Al-Ghouti, M. A. (2021). An overview of brine management: Emerging desalination technologies, life cycle assessment, and metal recovery methodologies. Journal of Environmental Management, 288, 112358.
[37] Giwa, A., Dufour, V., Al Marzooqi, F., Al Kaabi, M., & Hasan, S. W. (2017). Brine management methods: Recent innovations and current status. Desalination, 407, 1-23.
[38] Juby, G., Zacheis, A., Shih, W., Ravishanker, P., Mortazavi, B., & Nusser, M. D. (2008). Evaluation and selection of available processes for a zero-liquid discharge system for the Perris, California. Ground Water Basin.
[39] He, C., Carpenter, G., & Westerhoff, P. (2013). Demonstrating and innovative combination of ion exchange pretreatment and electrodialysis reversal for reclaimed water reverse osmosis concentrate minimization. Final Report, Water Reuse Research Foundation.
[40] Zhang, Y., Ghyselbrecht, K., Vanherpe, R., Meesschaert, B., Pinoy, L., & Van der Bruggen, B. (2012). RO concentrate minimization by electrodialysis: techno-economic analysis and environmental concerns. Journal of environmental management, 107, 28-36.
[41] Morillo, J., Usero, J., Rosado, D., El Bakouri, H., Riaza, A., & Bernaola, F. J. (2014). Comparative study of brine management technologies for desalination plants. Desalination, 336, 32-49.
[42] Tang, W., & Ng, H. Y. (2008). Concentration of brine by forward osmosis: performance and influence of membrane structure. Desalination, 224(1-3), 143-153.
[43] Ji, X., Curcio, E., Al Obaidani, S., Di Profio, G., Fontananova, E., & Drioli, E. (2010). Membrane distillation-crystallization of seawater reverse osmosis brines. Separation and Purification Technology, 71(1), 76-82.
[44] Mericq, J. P., Laborie, S., & Cabassud, C. (2010). Vacuum membrane distillation of seawater reverse osmosis brines. Water research, 44(18), 5260-5273.
[45] Melián-Martel, N., Sadhwani Alonso, J. J., & Pérez Báez, S. O. (2013). Reuse and management of brine in sustainable SWRO desalination plants. Desalination and Water Treatment, 51(1-3), 560-566.
[46] Molinari, R., Avci, A. H., Argurio, P., Curcio, E., Meca, S., Casas, S., ... & Cortina, J. L. (2022). Can Brine from Seawater Desalination Plants Be a Source of Critical Metals?. CHEMVIEWS.
[47] Huaman, R. N. E., & Jun, T. X. (2014). Energy related CO2 emissions and the progress on CCS projects: a review. Renewable and Sustainable Energy Reviews, 31, 368-385.
[48] Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., & Majid, M. Z. A. (2015). A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and sustainable energy reviews, 43, 843-862.
[49] Gibbins, J., & Chalmers, H. (2008). Carbon capture and storage. Energy policy, 36(12), 4317-4322.
[50] Zhang, L., Dzombak, D. A., & Kutchko, B. G. (2015). Wellbore cement integrity under geologic carbon storage conditions. In Novel Materials for Carbon Dioxide Mitigation Technology (pp. 333-362). Elsevier.
[51] Rackley, S. A. (2017). Carbon capture and storage. Butterworth-Heinemann.
[52] Rahman, F. A., Aziz, M. M. A., Saidur, R., Bakar, W. A. W. A., Hainin, M. R., Putrajaya, R., & Hassan, N. A. (2017). Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renewable and Sustainable Energy Reviews, 71, 112-126.
[53] Bouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L., ... & Spencer, T. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector.
[54] Wennersten, R., Sun, Q., & Li, H. (2015). The future potential for Carbon Capture and Storage in climate change mitigation–an overview from perspectives of technology, economy and risk. Journal of Cleaner Production, 103, 724-736.
[55] Ho, H. J., Iizuka, A., & Shibata, E. (2019). Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies. Industrial & Engineering Chemistry Research, 58(21), 8941-8954.
[56] Abd Rahaman, M. S., Cheng, L. H., Xu, X. H., Zhang, L., & Chen, H. L. (2011). A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renewable and Sustainable Energy Reviews, 15(8), 4002-4012.
[57] Li, L., Zhao, N., Wei, W., & Sun, Y. (2013). A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel, 108, 112-130.
[58] Al‐Mamoori, A., Krishnamurthy, A., Rownaghi, A. A., & Rezaei, F. (2017). Carbon capture and utilization update. Energy Technology, 5(6), 834-849.
[59] Feron, P. (Ed.). (2016). Absorption-based post-combustion capture of carbon dioxide. Woodhead publishing.
[60] Jansen, D., Gazzani, M., Manzolini, G., van Dijk, E., & Carbo, M. (2015). Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control, 40, 167-187.
[61] Voskian, S., & Hatton, T. A. (2019). Faradaic electro-swing reactive adsorption for CO2 capture. Energy & Environmental Science, 12(12), 3530-3547.
[62] Basile, A., Gugliuzza, A., Iulianelli, A., & Morrone, P. (2011). Membrane technology for carbon dioxide (CO2) capture in power plants. In Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (pp. 113-159). Woodhead Publishing.
[63] Wahby, A., Silvestre-Albero, J., Sepúlveda-Escribano, A., & Rodríguez-Reinoso, F. (2012). CO2 adsorption on carbon molecular sieves. Microporous and Mesoporous Materials, 164, 280-287.
[64] Nwaoha, C., Saiwan, C., Tontiwachwuthikul, P., Supap, T., Rongwong, W., Idem, R., ... & Benamor, A. (2016). Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. Journal of Natural Gas Science and Engineering, 33, 742-750.
[65] Song, C., Kitamura, Y., & Li, S. (2014). Optimization of a novel cryogenic CO2 capture process by response surface methodology (RSM). Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1666-1676.
[66] Arias, A. M., Mussati, M. C., Mores, P. L., Scenna, N. J., Caballero, J. A., & Mussati, S. F. (2016). Optimization of multi-stage membrane systems for CO2 capture from flue gas. International Journal of Greenhouse Gas Control, 53, 371-390.
[67] Goto, K., Kazama, S., Furukawa, A., Serizawa, M., Aramaki, S., & Shoji, K. (2013). Effect of CO2 purity on energy requirement of CO2 capture processes. Energy Procedia, 37, 806-812.
[68] Yeh, A. C., & Bai, H. (1999). Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions. Science of the Total Environment, 228(2-3), 121-133.
[69] Bai, H., & Yeh, A. C. (1997). Removal of CO2 greenhouse gas by ammonia scrubbing. Industrial & Engineering Chemistry Research, 36(6), 2490-2493.
[70] Stünkel, S., Drescher, A., Wind, J., Brinkmann, T., Repke, J. U., & Wozny, G. (2011). Carbon dioxide capture for the oxidative coupling of methane process–A case study in mini-plant scale. Chemical Engineering Research and Design, 89(8), 1261-1270.
[71] Sema, T., Naami, A., Fu, K., Edali, M., Liu, H., Shi, H., ... & Tontiwachwuthikul, P. (2012). Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA–MEA. Chemical engineering journal, 209, 501-512.
[72] Carpenter, S. M., & Long III, H. A. (2017). Integration of carbon capture in IGCC systems. In Integrated Gasification Combined Cycle (IGCC) Technologies (pp. 445-463). Woodhead Publishing.
[73] Rao, A. D. (2010). Gas-fired combined-cycle power plant design and technology. In Advanced power plant materials, design and technology (pp. 32-53). Woodhead Publishing.
[74] Shaddix, C., & Molina, A. (2011). Ignition, flame stability, and char combustion in oxy-fuel combustion. In Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture (pp. 101-124). Woodhead Publishing.
[75] Dincer, I. (2018). Comprehensive energy systems. Elsevier.
[76] Naucler, T., Campbell, W., & Ruijs, J. (2008). Carbon capture and storage: assessing the economics.
[77] Metz, B., Davidson, O., & De Coninck, H. (Eds.). (2005). Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press.
[78] Dincer, I., Colpan, C. O., & Kizilkan, O. (Eds.). (2017). Exergetic, energetic and environmental dimensions. Academic Press.
[79] Wilcox, J. (2012). Carbon capture. Springer Science & Business Media.
[80] Hertog, S., & Luciani, G. (2009). Energy and sustainability policies in the GCC.
[81] Mohammad, A. F., El-Naas, M. H., Suleiman, M. I., & Al Musharfy, M. (2016). Optimization of a solvay-based approach for CO2 capture. Int. J. Chem. Eng. Appl, 7, 230-234.
[82] Mourad, A. A. H., Mohammad, A. F., Altarawneh, M., Al‐Marzouqi, A. H., El‐Naas, M. H., & Al‐Marzouqi, M. H. (2021). Effects of potassium hydroxide and aluminum oxide on the performance of a modified solvay process for CO2 capture: A comparative study. International Journal of Energy Research, 45(9), 13952-13964.
[83] Singh, P., Niederer, J. P., & Versteeg, G. F. (2007). Structure and activity relationships for amine based CO2 absorbents—I. International journal of greenhouse gas control, 1(1), 5-10.
[84] Singh, P., Niederer, J. P., & Versteeg, G. F. (2009). Structure and activity relationships for amine-based CO2 absorbents-II. Chemical Engineering Research and Design, 87(2), 135-144.
[85] El-Naas, M. H., Al-Marzouqi, A. H., & Chaalal, O. (2010). A combined approach for the management of desalination reject brine and capture of CO2. Desalination, 251(1-3), 70-74.
[86] Wang, Q., & Li, Z. (2019). A modified Solvay process with low‐temperature calcination of NaHCO3 using monoethanolamine: Solubility determination and thermodynamic modeling. AIChE Journal, 65(10), e16701.
[87] Lee, S., Filburn, T. P., Gray, M., Park, J. W., & Song, H. J. (2008). Screening test of solid amine sorbents for CO2 capture. Industrial & Engineering Chemistry Research, 47(19), 7419-7423.
[88] Barzagli, F., Mani, F., & Peruzzini, M. (2013). Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP). International Journal of Greenhouse Gas Control, 16, 217-223.
[89] Rennie, R., & Law, J. (Eds.). (2016). A dictionary of chemistry. Oxford University Press.
[90] TIMOR, E. (2007). 2005 Minerals Yearbook. US Geological Survey.
[91] Abdel-Aal, H., Abdelkreem, M., & Zohdy, K. (2016). Dual-Purpose Solvay-Dow (Magnesium) Conceptual Process. Open Access Library Journal, 3(11), 1.
[92] Dave, N., Do, T., Puxty, G., Rowland, R., Feron, P. H. M., & Attalla, M. I. (2009). CO2 capture by aqueous amines and aqueous ammonia–A Comparison. Energy Procedia, 1(1), 949-954.
[93] Koornneef, J., Ramirez, A., van Harmelen, T., van Horssen, A., Turkenburg, W., & Faaij, A. (2010). The impact of CO2 capture in the power and heat sector on the emission of SO2, NOx, particulate matter, volatile organic compounds and NH3 in the European Union. Atmospheric environment, 44(11), 1369-1385.
[94] Huang, H. P., Shi, Y., Li, W., & Chang, S. G. (2001). Dual alkali approaches for the capture and separation of CO2. Energy & Fuels, 15(2), 263-268.
[95] Dindi, A., Quang, D. V., El Hadri, N., Rayer, A., Abdulkadir, A., & Abu-Zahra, M. R. (2014). Potential for the simultaneous capture and utilization of CO2 using desalination reject brine: amine solvent selection and evaluation. Energy Procedia, 63, 7947-7953.
[96] Dindi, A., Quang, D. V., & Abu-Zahra, M. R. (2015). Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine. Applied Energy, 154, 298-308.
[97] Abdel‐Wahab, A., & Batchelor, B. (2002). Chloride Removal from Recycled Cooling Water Using Ultra‐High Lime with Aluminum Process. Water environment research, 74(3), 256-263.
[98] El-Naas, M. H., Mohammad, A. F., Suleiman, M. I., Al Musharfy, M., & Al-Marzouqi, A. H. (2017). A new process for the capture of CO2 and reduction of water salinity. Desalination, 411, 69-75.
[99] Kang, D., Jo, H., Lee, M. G., & Park, J. (2016). Carbon dioxide utilization using a pretreated brine solution at normal temperature and pressure. Chemical Engineering Journal, 284, 1270-1278.
[100] Yoo, Y., Kang, D., Park, S., & Park, J. (2020). Carbon utilization based on post-treatment of desalinated reject brine and effect of structural properties of amines for CaCO3 polymorphs control. Desalination, 479, 114325.
[101] Kang, D., Yoo, Y., & Park, J. (2020). Accelerated chemical conversion of metal cations dissolved in seawater-based reject brine solution for desalination and CO2 utilization. Desalination, 473, 114147.
[102] Yoo, Y., Kang, D., Choi, E., Park, J., & Huh, I. S. (2019). Morphology control of magnesium carbonate for CO2 utilization using Mg2+ ions in industrial wastewater depending on length of alkyl chain of primary alkanolamine, reaction temperature, CO2 concentration, and Mg2+/Na+ ratio. Chemical Engineering Journal, 370, 237-250.
[103] Haghtalab, A., Kamali, M. J., & Shahrabadi, A. (2014). Prediction mineral scale formation in oil reservoirs during water injection. Fluid Phase Equilibria, 373, 43-54.
[104] Zendah, H., & Khattech, I. (2015). Standard enthalpy, entropy and Gibbs free energy of formation of “B” type carbonate fluorapatites. The Journal of Chemical Thermodynamics, 87, 29-33.
[105] Mustafa, J., Aya, A. H. M., Al-Marzouqi, A. H., & El-Naas, M. H. (2020). Simultaneous treatment of reject brine and capture of carbon dioxide: A comprehensive review. Desalination, 483, 114386.
[106] Gay-Lussac, J. L., & Thénard, L. J. (1808). Sur la décomposition et la recomposition de l'acide boracique. Ann. Chim. Phys, 68, 169-174.
[107] Davy, H. (1809). An Account of some New Analytical Researches on the Nature of Certain Bodies, particularly the alkalies, phosphorus, sulphur, carbonaceous matter, and the acids hitherto undecomposed; with some general observations on chemical theory... From the Philosophical Transactions. W. Bulmer & Company.
[108] Summaries, M. C. (2021). Mineral commodity summaries. US Geological Survey: Reston, VA, USA, 200.
[109] Herring, H. W. (1966). Selected Mechanical and Physical Properties of Boron Filaments. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION HAMPTON VA LANGLEY RESEARCH CEN TER.
[110] Layden, G. K. (1973). Fracture behaviour of boron filaments. Journal of Materials Science, 8(11), 1581-1589.
[111] May, G. S., & Spanos, C. J. (2006). Fundamentals of semiconductor manufacturing and process control. John Wiley & Sons.
[112] Jones, M. E., & Marsh, R. E. (1954). The preparation and structure of magnesium boride, MgB2. Journal of the American Chemical Society, 76(5), 1434-1436.
[113] Canfield, P. C., & Crabtree, G. W. (2003). Magnesium diboride: better late than never. Phys. Today, 56(3), 34-40.
[114] Braccini, V., Nardelli, D., Penco, R., & Grasso, G. (2007). Development of ex situ processed MgB2 wires and their applications to magnets. Physica C: Superconductivity, 456(1-2), 209-217.
[115] Wentorf Jr, R. H. (1957). Cubic form of boron nitride. The Journal of Chemical Physics, 26(4), 956-956.
[116] Greim, J., & Schwetz, K. A. (2000). Boron carbide, boron nitride, and metal borides. Ullmann's encyclopedia of industrial chemistry.
[117] Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., ... & Hone, J. (2010). Boron nitride substrates for high-quality graphene electronics. Nature nanotechnology, 5(10), 722-726.
[118] Cohen, M. L., & Zettl, A. (2010). The physics of boron nitride nanotubes. Physics Today, 63(11), 34.
[119] Gannett, W., Regan, W., Watanabe, K., Taniguchi, T., Crommie, M. F., & Zettl, A. (2011). Boron nitride substrates for high mobility chemical vapor deposited graphene. Applied Physics Letters, 98(24), 242105.
[120] Klotz, J. H., Moss, J., Zhao, R., Davis Jr, L. R., & Patterson, R. S. (1994). Oral toxicity of boric acid and other boron compounds to immature cat fleas (Siphonaptera: Pulicidae). Journal of economic entomology, 87(6), 1534-1536.
[121] Irschik, H., SCHUMMER, D., GERTH, K., HÖFLE, G., & REICHENBACH, H. (1995). The tartrolons, new boron-containing antibiotics from a myxobacterium, Sorangium cellulosum. The Journal of antibiotics, 48(1), 26-30.
[122] Zink, D. M., Bergmann, L., Ambrosek, D., Wallesch, M., Volz, D., & Mydlak, M. (2014). Singlet harvesting copper-based emitters: a modular approach towards next-generation OLED technology. Translational Materials Research, 1(1), 015003.
[123] Lide, D. R. (2004). CRC Handbook of Chemistry and Physics, 84th. Electrochemical Series. CRC Press LLC.
[124] Trigg, G. L., & Greulich, W. (Eds.). (1991). Encyclopedia of applied physics (Vol. 1). New York: VCH.
[125] Richardson, H. W. (1997). Handbook of copper compounds and applications. CRC Press.
[126] Prado, J. V., Vidal, A. R., & Durán, T. C. (2012). Application of copper bactericidal properties in medical practice. Revista medica de Chile, 140(10), 1325-1332.
[127] O'gorman, J., & Humphreys, H. (2012). Application of copper to prevent and control infection. Where are we now?. Journal of Hospital Infection, 81(4), 217-223.
[128] 陳家鏞. (2005). 濕法冶金手冊. 北京: 冶金工業出版社 2005.(Chen Jia-yong. Handbook of hydrometallurgy.
[129] Addison, C. C. (1984). The chemistry of the liquid alkali metals.
[130] Heiserman, D. (1991). Exploring chemical elements and their compounds. McGraw-Hill.
[131] BUDAVARI, S. (1989). An Encyclopedia of Chemicals, Drugs, and Biologicals. The Merck Index, 246.
[132] de Larramendi, I. R., Lozano, I., Enterría, M., Cid, R., Echeverría, M., Peña, S. R., ... & Ortiz‐Vitoriano, N. (2022). Unveiling the Role of Tetrabutylammonium and Cesium Bulky Cations in Enhancing Na‐O2 Battery Performance. Advanced Energy Materials, 12(2), 2102834.
[133] Rasor, N. S., & Warner, C. (1964). Correlation of emission processes for adsorbed alkali films on metal surfaces. Journal of Applied Physics, 35(9), 2589-2600.
[134] Bick, M., Prinz, H., & Steinmetz, A. (2000). Cesium and cesium compounds. Ullmann's Encyclopedia of industrial Chemistry.
[135] Groeger, S., Pazgalev, A. S., & Weis, A. (2005). Comparison of discharge lamp and laser pumped cesium magnetometers. Applied Physics B, 80(6), 645-654.
[136] Charrier, E., Charsley, E. L., Laye, P. G., Markham, H. M., Berger, B., & Griffiths, T. T. (2006). Determination of the temperature and enthalpy of the solid–solid phase transition of caesium nitrate by differential scanning calorimetry. Thermochimica acta, 445(1), 36-39.
[137] Essen, L., & Parry, J. V. (1955). An atomic standard of frequency and time interval: a caesium resonator. Nature, 176(4476), 280-282.
[138] Jolly, J. L. (1985). Mineral Facts and Problem 1985 Edition. Bureau of Mines, 197-221.
[139] Kirchhoff, G., & Bunsen, R. (1860). Chemische analyse durch spectralbeobachtungen. Annalen der Physik, 186(6), 161-189.
[140] Weeks, M. E. (1932). The discovery of the elements. XIII. Some spectroscopic discoveries. Journal of Chemical Education, 9(8), 1413.
[141] Ohly, J. (1910). Analysis, detection and commercial value of the rare metals. Mining Science Publishing Company.
[142] Paschalis, C., Jenner, F. A., & Lee, C. R. (1978). Effects of rubidium chloride on the course of manic-depressive illness. Journal of the Royal Society of Medicine, 71(5), 343-352.
[143] Malek-Ahmadi, P., & Williams, J. A. (1984). Rubidium in psychiatry: research implications. Pharmacology Biochemistry and Behavior, 21, 49-50.
[144] Canavese, C., DeCostanzi, E., Branciforte, L., Caropreso, A., Nonnato, A., & Sabbioni, E. (2001). Depression in dialysis. Kidney International, 60, 1201-1202.
[145] Lake, J. (2007). Textbook of integrative mental health care. Thieme.
[146] Yen, C. K., Yano, Y., Budinger, T. F., Friedland, R., Derenzo, S., & Huesman, R. (1981). Brain tumor evaluation using pet and Rb-82. Clinical Nuclear Medicine, 6(9), 448.
[147] Jadvar, H., & Parker, J. A. (2005). Clinical PET and PET/CT. Springer Science & Business Media.
[148] Coursey, J. S., Schwab, D. J., Tsai, J. J., & Dragoset, R. A. (2015). Atomic weights and isotopic compositions with relative atomic masses. NIST Physical Measurement Laboratory.
[149] Pentagon, V. A. (2005). MILITARILY CRITICAL TECHNOLOGIES LIST.
[150] Berzelius, J. J. (1817). Ein neues mineralisches Alkali und ein neues Metall. J. Chem. Phys, 21, 44-48.
[151] Marek, L. (2009). Illinium: An Impeached Element. Journal of Chemical Education, 86(10), 1138.
[152] Chen, W. S., & Ho, H. J. (2018). Recovery of valuable metals from lithium-ion batteries NMC cathode waste materials by hydrometallurgical methods. Metals, 8(5), 321.
[153] Kamienski, C. W., McDonald, D. P., Stark, M. W., & Papcun, J. R. (2000). Lithium and lithium compounds. Kirk‐Othmer Encyclopedia of Chemical Technology.
[154] Geddes, J. R., Burgess, S., Hawton, K., Jamison, K., & Goodwin, G. M. (2004). Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomized controlled trials. American Journal of Psychiatry, 161(2), 217-222.
[155] Luu, B., & Rodway, G. (2018). Lithium therapy for bipolar disorder. The Journal for Nurse Practitioners, 14(2), 93-99.
[156] Gomes-da-Costa, S., Marx, W., Corponi, F., Anmella, G., Murru, A., Pons-Cabrera, M. T., ... & Pacchiarotti, I. (2021). Lithium therapy and weight change in people with bipolar disorder: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews.
[157] Jha, M. K., Kumari, A., Jha, A. K., Kumar, V., Hait, J., & Pandey, B. D. (2013). Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste management, 33(9), 1890-1897.
[158] Maroufi, S., Assefi, M., Nekouei, R. K., & Sahajwalla, V. (2020). Recovery of lithium and cobalt from waste lithium-ion batteries through a selective isolation-suspension approach. Sustainable Materials and Technologies, 23, e00139.
[159] Roy, J. J., Rarotra, S., Krikstolaityte, V., Zhuoran, K. W., Cindy, Y. D. I., Tan, X. Y., ... & Srinivasan, M. (2021). Green Recycling Methods to Treat Lithium‐Ion Batteries E‐Waste: A Circular Approach to Sustainability. Advanced Materials, 2103346.
[160] Baláž, P. (2003). Mechanical activation in hydrometallurgy. International journal of mineral processing, 72(1-4), 341-354.
[161] Baláž, P., Aláčová, A., Achimovičová, M., Ficeriova, J., & Godočíková, E. (2005). Mechanochemistry in hydrometallurgy of sulphide minerals. Hydrometallurgy, 77(1-2), 9-17.
[162] Habashi, F. (2009). Recent trends in extractive metallurgy. Journal of Mining and Metallurgy, Section B: Metallurgy, 45(1), 1-13.
[163] Chagnes, A. (2020). Advances in hydrometallurgy. MDPI-Multidisciplinary Digital Publishing Institute.
[164] Mauchauffée, S., & Meux, E. (2007). Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater. Chemosphere, 69(5), 763-768.
[165] Harvey, R., Hannah, R., & Vaughan, J. (2011). Selective precipitation of mixed nickel–cobalt hydroxide. Hydrometallurgy, 105(3-4), 222-228.
[166] Setaro, A., Bluemmel, P., Witt, M. U., Narula, R., & Reich, S. (2016). Carbon nanotube chirality enrichment through chirality‐selective precipitation. physica status solidi (b), 253(12), 2380-2384.
[167] Jha, M. K., Kumar, V., Jeong, J., & Lee, J. C. (2012). Review on solvent extraction of cadmium from various solutions. hydrometallurgy, 111, 1-9.
[168] El-Nadi, Y. A. (2017). Solvent extraction and its applications on ore processing and recovery of metals: classical approach. Separation & Purification Reviews, 46(3), 195-215.
[169] Belova, V. V. (2017). Development of solvent extraction methods for recovering rare earth metals. Theoretical Foundations of Chemical Engineering, 51(4), 599-609.
[170] Yang, F., Kubota, F., Baba, Y., Kamiya, N., & Goto, M. (2013). Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Journal of hazardous materials, 254, 79-88.
[171] Zhang, Y., Chen, M., Tan, Q., Wang, B., & Chen, S. (2018). Recovery of copper from WPCBs using slurry electrolysis with ionic liquid [BSO3HPy]∙ HSO4. Hydrometallurgy, 175, 150-154.
[172] Othman, E. A., van der Ham, A. G., Miedema, H., & Kersten, S. R. (2020). Recovery of metals from spent lithium-ion batteries using ionic liquid [P8888][Oleate]. Separation and purification technology, 252, 117435.
[173] Hubicki, Z., Wawrzkiewicz, M., & Wołowicz, A. (2008). Application of ion exchange methods in recovery of Pd (II) ions–a review. Chem. Anal.(Warsaw), 53, 759-784.
[174] Nikoloski, A. N., & Ang, K. L. (2014). Review of the application of ion exchange resins for the recovery of platinum-group metals from hydrochloric acid solutions. Mineral Processing and Extractive Metallurgy Review, 35(6), 369-389.
[175] Sole, K. C., Mooiman, M. B., & Hardwick, E. (2018). Ion exchange in hydrometallurgical processing: an overview and selected applications. Separation & Purification Reviews, 47(2), 159-178.
[176] Zou, X. (1991). Recovery of kraft black liquor including direct causticization.
[177] Dai, Z. F., Xiao, X. L., Li, F. Q., & Ma, P. H. (2005). Discussion on methods for the preparation for high-purity lithium carbonate. J. Salt Lake Res, 2, 53-60.
[178] Najafpour, G. (2015). Biochemical engineering and biotechnology. Elsevier.
[179] 戴猷元. (2015). 液液萃取化工基礎. 化學工業出版社。
[180] Servis, M. J., Wu, D. T., & Shafer, J. C. (2018). The role of solvent and neutral organophosphorus extractant structure in their organization and association. Journal of Molecular Liquids, 253, 314-325.
[181] Lumetta, G. J., Gelis, A. V., & Vandegrift, G. F. (2010). Solvent systems combining neutral and acidic extractants for separating trivalent lanthanides from the transuranic elements. Solvent Extraction and Ion Exchange, 28(3), 287-312.
[182] Torkaman, R., Asadollahzadeh, M., Torab-Mostaedi, M., & Maragheh, M. G. (2017). Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process. Separation and Purification Technology, 186, 318-325.
[183] Sarangi, K., Padhan, E., Sarma, P. V. R. B., Park, K. H., & Das, R. P. (2006). Removal/recovery of hydrochloric acid using Alamine 336, Aliquat 336, TBP and Cyanex 923. Hydrometallurgy, 84(3-4), 125-129.
[184] Ramadevi, G., Sreenivas, T., Navale, A., & Padmanabhan, N. (2012). Solvent extraction of uranium from lean grade acidic sulfate leach liquor with alamine 336 reagent. Journal of radioanalytical and nuclear chemistry, 294(1), 13-18.
[185] Kokare, B. N., Mandhare, A. M., & Anuse, M. A. (2010). Liquid-liquid extraction of cerium (IV) from salicylate media using N-7V-octylaniline in xylene as an extractant. Journal of the Chilean Chemical Society, 55(4), 431-435.
[186] Lei, Z., Chen, B., Koo, Y. M., & MacFarlane, D. R. (2017). Introduction: ionic liquids. Chemical Reviews, 117(10), 6633-6635.
[187] Seddon, K. R., Stark, A., & Torres, M. J. (2000). Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 72(12), 2275-2287.
[188] Mutelet, F., Butet, V., & Jaubert, J. N. (2005). Application of inverse gas chromatography and regular solution theory for characterization of ionic liquids. Industrial & engineering chemistry research, 44(11), 4120-4127.
[189] Pham-Truong, T. N., Randriamahazaka, H., & Ghilane, J. (2020). Electrochemistry of bi-redox ionic liquid from solution to bi-functional carbon surface. Electrochimica Acta, 354, 136689.
[190] Truong, T. N. P., Randriamahazaka, H., & Ghilane, J. (2017). Redox monomer ionic liquid based on quaternary ammonium: from electrochemistry to polymer brushes. Electrochemistry Communications, 82, 25-29.
[191] von Brisinski, N. S., Höfft, O., & Endres, F. (2014). Plasma electrochemistry in ionic liquids: From silver to silicon nanoparticles. Journal of Molecular Liquids, 192, 59-66.
[192] Sas, O. G., Sanchez, P. B., Gonzalez, B., & Dominguez, A. (2020). Removal of phenolic pollutants from wastewater streams using ionic liquids. Separation and Purification Technology, 236, 116310.
[193] Ma, Y., Gao, J., Wang, Y., Hu, J., & Cui, P. (2018). Ionic liquid-based CO2 capture in power plants for low carbon emissions. International Journal of Greenhouse Gas Control, 75, 134-139.
[194] Abe, H., Nemoto, F., Kishimura, H., & Ozawa, S. (2020). CO2 capture by quenched quaternary ammonium ionic liquid-propanol mixtures assessed by Raman spectroscopy. Journal of Molecular Liquids, 315, 113687.
[195] Chen, M., Wang, X., Liu, X., Wu, Y., Zhang, F., & Zhang, Z. (2020). Anhydrous “Dry Ionic Liquids”: A promising absorbent for CO2 capture. Journal of Molecular Liquids, 305, 112810.
[196] Shaikh, A. R., Ashraf, M., AlMayef, T., Chawla, M., Poater, A., & Cavallo, L. (2020). Amino acid ionic liquids as potential candidates for CO2 capture: combined density functional theory and molecular dynamics simulations. Chemical Physics Letters, 745, 137239.
[197] Zhou, H., Xu, X., Chen, X., & Yu, G. (2020). Novel ionic liquids phase change solvents for CO2 capture. International Journal of Greenhouse Gas Control, 98, 103068.
[198] Castillo, A. S. R., Guiheneuf, S., Le Guével, R., Biard, P. F., Paquin, L., Amrane, A., & Couvert, A. (2016). Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor. Journal of hazardous materials, 307, 221-230.
[199] 張鎖江, 徐春明, 呂興梅, & 周清. (2009). 離子液體與綠色化學。
[200] Llaver, M., Mafra, G., Merib, J., Lucena, R., Wuilloud, R. G., & Carasek, E. (2021). Ionic liquids. In Analytical Sample Preparation With Nano-and Other High-Performance Materials (pp. 427-451). Elsevier.
[201] Shah, M. U. H., Reddy, A. V. B., & Moniruzzaman, M. (2022). Ionic liquid–based surfactants for oil spill remediation. In Ionic Liquid-Based Technologies for Environmental Sustainability (pp. 257-268). Elsevier.
[202] Luo, H., Dai, S., Bonnesen, P. V., Buchanan, A. C., Holbrey, J. D., Bridges, N. J., & Rogers, R. D. (2004). Extraction of cesium ions from aqueous solutions using calix [4] arene-bis (tert-octylbenzo-crown-6) in ionic liquids. Analytical Chemistry, 76(11), 3078-3083.
[203] Mahandra, H., Singh, R., & Gupta, B. (2017). Liquid-liquid extraction studies on Zn (II) and Cd (II) using phosphonium ionic liquid (Cyphos IL 104) and recovery of zinc from zinc plating mud. Separation and Purification Technology, 177, 281-292.
[204] Pawliszyn, J. (Ed.). (2002). Sampling and sample preparation in field and laboratory: fundamentals and new directions in sample preparation (Vol. 37). Elsevier.
[205] Luo, Y., Chen, Q., & Shen, X. (2019). Complexation and extraction investigation of rubidium ion by calixcrown-C2mimNTf2 system. Separation and Purification Technology, 227, 115704.
[206] Holbrey, J. D., Visser, A. E., Spear, S. K., Reichert, W. M., Swatloski, R. P., Broker, G. A., & Rogers, R. D. (2003). Mercury (II) partitioning from aqueous solutions with a new, hydrophobic ethylene-glycol functionalized bis-imidazolium ionic liquid. Green chemistry, 5(2), 129-135.
[207] Wei, G. T., Yang, Z., & Chen, C. J. (2003). Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Analytica Chimica Acta, 488(2), 183-192.
[208] Cieszynska, A., & Wiśniewski, M. (2012). Extractive recovery of palladium (II) from hydrochloric acid solutions with Cyphos® IL 104. Hydrometallurgy, 113, 79-85.
[209] Pospiech, B. (2015). Studies on extraction and permeation of cadmium (II) using Cyphos IL 104 as selective extractant and ion carrier. Hydrometallurgy, 154, 88-94.
[210] Kumari, A., Sinha, M. K., Sahu, S. K., & Pandey, B. D. (2016). Solvent extraction and separation of trivalent lanthanides using Cyphos IL 104, a novel phosphonium ionic liquid as extractant. Solvent Extraction and Ion Exchange, 34(5), 469-484.
[211] Nayak, S., & Devi, N. (2017). Studies on extraction of gallium (III) from chloride solution using Cyphos IL 104 and its removal from photodiodes and red mud. Hydrometallurgy, 171, 191-197.
[212] Nayak, S., & Devi, N. (2020). Studies on the solvent extraction of indium (III) from aqueous chloride medium using Cyphos IL 104. Materials Today: Proceedings, 30, 258-261.
[213] Zhu, Z., Tulpatowicz, K., Pranolo, Y., & Cheng, C. Y. (2015). Solvent extraction of molybdenum and vanadium from sulphate solutions with Cyphos IL 101. Hydrometallurgy, 154, 72-77.
[214] Zhu, Z., Yoko, P., & Cheng, C. Y. (2017). Recovery of cobalt and manganese from nickel laterite leach solutions containing chloride by solvent extraction using Cyphos IL 101. Hydrometallurgy, 169, 213-218.
[215] Kumar, S., & Jain, S. (2013). History, introduction, and kinetics of ion exchange materials. Journal of chemistry, 2013.
[216] Nasef, M. M., & Ujang, Z. (2012). Introduction to ion exchange processes. Ion exchange technology I, 1-39.
[217] Demiral, H., & Güngör, C. (2016). Adsorption of copper (II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of cleaner production, 124, 103-113.
[218] Chen, W. S., Chen, Y. C., & Lee, C. H. (2022). Modified activated carbon for copper ion removal from aqueous solution. Processes, 10(1), 150.
[219] Ok, Y. S., Yang, J. E., Zhang, Y. S., Kim, S. J., & Chung, D. Y. (2007). Heavy metal adsorption by a formulated zeolite-Portland cement mixture. Journal of Hazardous Materials, 147(1-2), 91-96.
[220] Sue-aok, N., Srithanratana, T., Rangsriwatananon, K., & Hengrasmee, S. (2010). Study of ethylene adsorption on zeolite NaY modified with group I metal ions. Applied Surface Science, 256(12), 3997-4002.
[221] Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., ... & Li, R. (2019). Heavy metal adsorption with zeolites: The role of hierarchical pore architecture. Chemical Engineering Journal, 359, 363-372.
[222] Bibler, J. P. (1990). Ion exchange in the nuclear industry. In Recent Developments in Ion Exchange (pp. 121-133). Springer, Dordrecht.
[223] Wang, J., & Wan, Z. (2015). Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Progress in Nuclear Energy, 78, 47-55.
[224] Winters, J. C., & Kunin, R. (1949). Ion Exchange in the Pharmaceutical Field. Industrial & Engineering Chemistry, 41(3), 460-463.
[225] Elder, D. P. (2005). Pharmaceutical applications of ion-exchange resins. Journal of Chemical Education, 82(4), 575.
[226] Harland, C. E. (1994). Ion exchange: theory and practice (No. 29). Royal society of Chemistry.
[227] SenGupta, A. K. (1995). Ion exchange technology: advances in pollution control. CRC Press.
[228] Wołowicz, A., & Hubicki, Z. (2011). Comparison of strongly basic anion exchange resins applicability for the removal of palladium (II) ions from acidic solutions. Chemical engineering journal, 171(1), 206-215.
[229] Helms, R. F. (1973). Evaluation of ion exchange for demineralization of wastewater (Doctoral dissertation, University of Colorado).
[230] Barros, M. A. S. D., Arroyo, P. A., & Silva, E. A. (2013). General aspects of aqueous sorption process in fixed beds. Mass Transfer—Advances in Sustainable Energy and Environment Oriented Numerical Modeling; Nakajima, H., Ed, 361-386.
[231] Sánchez-Polo, M., & Rivera-Utrilla, J. (2002). Adsorbent− adsorbate interactions in the adsorption of Cd (II) and Hg (II) on ozonized activated carbons. Environmental science & technology, 36(17), 3850-3854.
[232] Hill, T. L. (1952). Theory of physical adsorption. In Advances in catalysis (Vol. 4, pp. 211-258). Academic Press.
[233] Breeuwsma, A., & Lyklema, J. (1973). Physical and chemical adsorption of ions in the electrical double layer on hematite (α-Fe2O3). Journal of Colloid and Interface Science, 43(2), 437-448.
[234] Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. John Wiley & Sons.
[235] Nakama, Y. (2017). Surfactants. Cosmetic Science and Technology. Theoretical Principles and Applications, 231-244.
[236] ALOthman, Z. A. (2012). A review: fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874-2902.
[237] Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732.
[238] Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279.
[239] Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470.
[240] Langmuir, I. (2013). The constitution and fundamental properties of solids and liquids. II Liquids. In A Source Book in Chemistry, 1900-1950 (pp. 123-131). Harvard University Press.
[241] Hammond, K. D., & Conner Jr, W. C. (2013). Analysis of catalyst surface structure by physical sorption. In Advances in Catalysis (Vol. 56, pp. 1-101). Academic Press.
[242] Kecili, R., & Hussain, C. M. (2018). Mechanism of adsorption on nanomaterials. In Nanomaterials in Chromatography (pp. 89-115). Elsevier.
[243] Buttersack, C. (2019). Modeling of type IV and V sigmoidal adsorption isotherms. Physical Chemistry Chemical Physics, 21(10), 5614-5626.
[244] Verbraeken, M. C., & Brandani, S. (2020). A priori predictions of type I and type V isotherms by the rigid adsorbent lattice fluid. Adsorption, 26(7), 989-1000.
[245] Yurdakal, S., Garlisi, C., Özcan, L., Bellardita, M., & Palmisano, G. (2019). (Photo) catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV–Vis, photoluminescence, and electrochemical characterizations. In Heterogeneous photocatalysis (pp. 87-152). Elsevier.
[246] Yahia, M. B., Torkia, Y. B., Knani, S., Hachicha, M. A., Khalfaoui, M., & Lamine, A. B. (2013). Models for type VI adsorption isotherms from a statistical mechanical formulation. Adsorption Science & Technology, 31(4), 341-357.
[247] LIST, G. (2009). Bleaching and Purifying Fats and Oils. 2.
[248] Pratt, A. (2014). Environmental applications of magnetic nanoparticles. In Frontiers of Nanoscience (Vol. 6, pp. 259-307). Elsevier.
[249] Liu, Y. (2009). Is the free energy change of adsorption correctly calculated?. Journal of Chemical & Engineering Data, 54(7), 1981-1985.
[250] Ryu, T., Shin, J., Ghoreishian, S. M., Chung, K. S., & Huh, Y. S. (2019). Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite. Hydrometallurgy, 184, 22-28.
[251] Han, Y., Kim, S., Yu, S., Myung, N. V., & Kim, H. (2020). Electrospun hydrogen manganese oxide nanofibers as effective adsorbents for Li+ recovery from seawater. Journal of Industrial and Engineering Chemistry, 81, 115-123.
[252] Wongjaikham, W., Wongsawaeng, D., Hosemann, P., Kanokworakan, C., & Ratnitsai, V. (2018). Enhancement of uranium recovery from seawater using amidoximated polymer gel synthesized from radiation-polymerization and crosslinking of acrylonitrile and methacrylic acid monomers. Journal of Environmental Chemical Engineering, 6(2), 2768-2777.
[253] Li, P., Wang, J., Wang, Y., Liang, J., He, B., Pan, D., ... & Wang, X. (2019). Photoconversion of U (VI) by TiO2: an efficient strategy for seawater uranium extraction. Chemical Engineering Journal, 365, 231-241.
[254] Wu, H., Chi, F., Zhang, S., Wen, J., Xiong, J., & Hu, S. (2019). Control of pore chemistry in metal-organic frameworks for selective uranium extraction from seawater. Microporous and Mesoporous Materials, 288, 109567.
[255] Calvo, E. J. (2019). Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Current Opinion in Electrochemistry, 15, 102-108.
[256] Yu, X., Fan, X., Guo, Y., & Deng, T. (2019). Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate. Separation and Purification Technology, 211, 790-798.
[257] Yang, S., Liu, G., Wang, J., Cui, L., & Chen, Y. (2019). Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid. Fluid Phase Equilibria, 493, 129-136.
[258] Ayers, P., Dudeney, A. W. L., & Kahraman, F. (1981). Solvent extraction of boron with 2-ethyl-1, 3-hexanediol and 2-chloro-4-(1, 1, 3, 3-tetramethylbutyl)-6-methylol-phenol. Journal of Inorganic and Nuclear Chemistry, 43(9), 2097-2100.
[259] Peng, X., Li, L., Shi, D., Zhang, L., Li, H., Nie, F., & Song, F. (2018). Recovery of boric acid from salt lake brines by solvent extraction with 2-butyl-1-n-octanol. Hydrometallurgy, 177, 161-167.
[260] Guo, J., Yang, Y., Gao, X., & Yu, J. (2020). Boron extraction from lithium-rich brine using mixed alcohols. Hydrometallurgy, 197, 105477.
[261] Peng, X., Shi, D., Zhang, Y., Zhang, L., Ji, L., & Li, L. (2021). Recovery of boron from unacidified salt lake brine by solvent extraction with 2, 2, 4-trimethyl-1, 3-pentanediol. Journal of Molecular Liquids, 326, 115301.
[262] Fortuny, A., Coll, M. T., & Sastre, A. M. (2012). Use of methyltrioctyl/decylammonium bis 2, 4, 4-(trimethylpentyl) phosphinate ionic liquid (ALiCY IL) on the boron extraction in chloride media. Separation and purification technology, 97, 137-141.
[263] Joshi, M. D., Chalumot, G., Kim, Y. W., & Anderson, J. L. (2012). Synthesis of glucaminium-based ionic liquids and their application in the removal of boron from water. Chemical communications, 48(10), 1410-1412.
[264] Öztürk, N., & Köse, T. E. (2008). Boron removal from aqueous solutions by ion-exchange resin: Batch studies. Desalination, 227(1-3), 233-240.
[265] Yan, C., Yi, W., Ma, P., Deng, X., & Li, F. (2008). Removal of boron from refined brine by using selective ion exchange resins. Journal of hazardous materials, 154(1-3), 564-571.
[266] Kabay, N. A. L. A. N., Sarp, S., Yuksel, M., Kitis, M., Koseoğlu, H., Arar, Ö. Z. G. Ü. R., ... & Semiat, R. (2008). Removal of boron from SWRO permeate by boron selective ion exchange resins containing N-methyl glucamine groups. Desalination, 223(1-3), 49-56.
[267] Arias, M. F. C., i Bru, L. V., Rico, D. P., & Galvañ, P. V. (2011). Comparison of ion exchange resins used in reduction of boron in desalinated water for human consumption. Desalination, 278(1-3), 244-249.
[268] Alharati, A., Swesi, Y., Fiaty, K., & Charcosset, C. (2017). Boron removal in water using a hybrid membrane process of ion exchange resin and microfiltration without continuous resin addition. Journal of water process engineering, 17, 32-39.
[269] Sole, K. C., & Hiskey, J. B. (1995). Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301. Hydrometallurgy, 37(2), 129-147.
[270] Kongolo, K., Mwema, M. D., Banza, A. N., & Gock, E. (2003). Cobalt and zinc recovery from copper sulphate solution by solvent extraction. Minerals Engineering, 16(12), 1371-1374.
[271] Sridhar, V., Verma, J. K., & Kumar, S. A. (2009). Selective separation of copper and nickel by solvent extraction using LIX 984N. Hydrometallurgy, 99(1-2), 124-126.
[272] Lu, J., & Dreisinger, D. (2013). Solvent extraction of copper from chloride solution I: Extraction isotherms. Hydrometallurgy, 137, 13-17.
[273] Mahmoudi, A., Shakibania, S., Rezaee, S., & Mokmeli, M. (2020). Effect of the chloride content of seawater on the copper solvent extraction using Acorga M5774 and LIX 984N extractants. Separation and Purification Technology, 251, 117394.
[274] Wei, G. T., Chen, J. C., & Yang, Z. (2003). Studies on liquid/liquid extraction of copper ion with room temperature ionic liquid. Journal of the Chinese Chemical Society, 50(6), 1123-1130.
[275] Raghavan, R., & Bhatt, C. V. (1998). Comparative study of certain ion-exchange resins for application in copper-bearing process solutions. Hydrometallurgy, 50(2), 169-183.
[276] Yalçin, S., Apak, R., Hizal, J., & Afşar, H. (2001). Recovery of copper (II) and chromium (III, VI) from electroplating-industry wastewater by ion exchange. Separation Science and Technology, 36(10), 2181-2196.
[277] Jurrius, Y., Sole, K. C., & Hardwick, E. (2014). Removal of copper and zinc from a cobalt electrolyte by ion exchange at Kamoto Copper Company’s Luilu plant. Hydrometallurgy, 2, 281-294.
[278] Botelho Junior, A. B., Dreisinger, D. B., & Espinosa, D. C. (2019). A review of nickel, copper, and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings. Mining, Metallurgy & Exploration, 36(1), 199-213.
[279] Choi, J. W., Song, M. H., Bediako, J. K., & Yun, Y. S. (2020). Sequential recovery of gold and copper from bioleached wastewater using ion exchange resins. Environmental Pollution, 266, 115167.
[280] Kordosky, G. A. (1992). Copper solvent extraction: the state of the art. Jom, 44(5), 40-45.
[281] Zhang, D. J., Dong, L., Li, Y. T., Wu, Y., Ma, Y. X., & Yang, B. (2018). Copper leaching from waste printed circuit boards using typical acidic ionic liquids recovery of e-wastes’ surplus value. Waste Management, 78, 191-197.
[282] He, J., Yang, J., Tariq, S. M., Duan, C., & Zhao, Y. (2020). Comparative investigation on copper leaching efficiency from waste mobile phones using various types of ionic liquids. Journal of Cleaner Production, 256, 120368.
[283] 楊玲, 王林生, 賴華生, 周建, 文小強, & 陳佩琳. (2011). 不同稀釋劑中 t-BAMBP 萃取銣銫的研究. 稀有金屬, 35(4), 627-632.
[284] 尤志剛, 王舒婭, 李波, 段東平, & 鄭紅. (2015). t-BAMBP 萃取微量銣的基礎研究. 化學試劑, 37(2), 161-164.
[285] Liu, S. M., Liu, H. H., Huang, Y. J., & Yang, W. J. (2015). Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP–kerosene solution. Transactions of nonferrous metals society of China, 25(1), 329-334.
[286] Wang, J., Che, D., & Qin, W. (2015). Extraction of rubidium by t-BAMBP in cyclohexane. Chinese journal of chemical engineering, 23(7), 1110-1113.
[287] 伊躍軍, 譚秀民, 張利珍, 張永興, & 李琦. (2016). t-BAMBP 萃取分離銣, 鉀技術的研究. 鹽業與化工, (11), 15-17.
[288] Xing, P., Wang, G., Wang, C., Ma, B., & Chen, Y. (2018). Separation of rubidium from potassium in rubidium ore liquor by solvent extraction with t-BAMBP. Minerals Engineering, 121, 158-163.
[289] Xu, C., Yuan, L., Shen, X., & Zhai, M. (2010). Efficient removal of caesium ions from aqueous solution using a calix crown ether in ionic liquids: mechanism and radiation effect. Dalton Transactions, 39(16), 3897-3902.
[290] Chen, W. S., Lee, C. H., & Ho, H. J. (2018). Purification of lithium carbonate from sulphate solutions through hydrogenation using the dowex G26 resin. Applied Sciences, 8(11), 2252.
[291] Chen, W. S., Liu, T. Y., & Lee, C. H. (2020). Recycle of vanadium from aluminum slag of ferrovanadium. In IOP Conference Series: Materials Science and Engineering (Vol. 720, No. 1, p. 012001). IOP Publishing.
[292] Brunner, P. H., & Rechberger, H. (2016). Handbook of material flow analysis: For environmental, resource, and waste engineers. CRC press.
[293] Paul, H., & Helmut, R. (2004). Practical handbook of material flow analysis. Washington, DC: Lewis Publishers.
[294] Rotter, V. S., Kost, T., Winkler, J., & Bilitewski, B. (2004). Material flow analysis of RDF-production processes. Waste management, 24(10), 1005-1021.
[295] Hashimoto, S., Tanikawa, H., & Moriguchi, Y. (2007). Where will large amounts of materials accumulated within the economy go?–A material flow analysis of construction minerals for Japan. Waste management, 27(12), 1725-1738.
[296] Owens, E. L., Zhang, Q., & Mihelcic, J. R. (2011). Material flow analysis applied to household solid waste and marine litter on a small island developing state. Journal of Environmental Engineering, 137(10), 937-944.
[297] Zhou, Y., Yang, N., & Hu, S. (2013). Industrial metabolism of PVC in China: A dynamic material flow analysis. Resources, Conservation and Recycling, 73, 33-40.
[298] Moriguchi, Y., & Hashimoto, S. (2016). Material flow analysis and waste management. Taking stock of industrial ecology, 247-262.
[299] Taulo, J. L., & Sebitosi, A. B. (2016). Material and energy flow analysis of the Malawian tea industry. Renewable and Sustainable Energy Reviews, 56, 1337-1350.
[300] Schlei‐Peters, I., Wichmann, M. G., Matthes, I. G., Gundlach, F. W., & Spengler, T. S. (2018). Integrated material flow analysis and process modeling to increase energy and water efficiency of industrial cooling water systems. Journal of Industrial Ecology, 22(1), 41-54.
[301] Graedel, T. E. (2019). Material flow analysis from origin to evolution. Environmental science & technology, 53(21), 12188-12196.
[302] EEA. (2000). Environmental signals 2000. Environmental Assessment Report 6.
[303] Van der Voet, E. (2002). Substance flow analysis methodology. A handbook of industrial ecology, 91-101.
[304] Furberg, A., Arvidsson, R., & Molander, S. (2016). Very small flows? Review of the societal metabolism of nanomaterials. Advances in nanotechnology, 15.
[305] Bringezu, S., & Moriguchi, Y. (2018). Material flow analysis. In Green accounting (pp. 149-166). Routledge.
[306] Mathieux, F., Ardente, F., Bobba, S., Nuss, P., Blengini, G. A., Dias, P. A., ... & Solar, S. (2017). Critical raw materials and the circular economy. Publications Office of the European Union: Bruxelles, Belgium.
[307] Jeong, Y. S., Matsubae-Yokoyama, K., Kubo, H., Pak, J. J., & Nagasaka, T. (2009). Substance flow analysis of phosphorus and manganese correlated with South Korean steel industry. Resources, Conservation and Recycling, 53(9), 479-489.
[308] 陳嬿先, & 陳律言. (2011). 台灣地區高科技業銦之物質流分析.
[309] Li, B., Boiarkina, I., Young, B., & Yu, W. (2015). Substance flow analysis of phosphorus within New Zealand and comparison with other countries. Science of the Total Environment, 527, 483-492.
[310] Yen, F. C., Chang, T. C., & Xu, W. H. (2016). Substance Flow Analysis of Tantalum in Taiwan. MATERIALS TRANSACTIONS, 57(5), 613-617.
[311] Chu, J., Yin, X., He, M., Ouyang, W., Lin, C., & Liu, X. (2021). Substance flow analysis and environmental release of antimony in the life cycle of polyethylene terephthalate products. Journal of Cleaner Production, 291, 125252.
[312] Han, J. C., Shang, F., Li, P., Li, B., Zhou, Y., & Huang, Y. (2021). Coupling Bayesian-Monte Carlo simulations with substance flow analysis for efficient pollutant management: a case study of phosphorus flows in China. Resources, Conservation and Recycling, 169, 105550.
[313] Loiseau, E., Junqua, G., Roux, P., & Bellon-Maurel, V. (2012). Environmental assessment of a territory: An overview of existing tools and methods. Journal of environmental management, 112, 213-225.
[314] Shu, H. Y., Chang, M. C., & Liu, J. J. (2016). Cation resin fixed-bed column for the recovery of valuable THAM reagent from the wastewater. Process Safety and Environmental Protection, 104, 571-586.
[315] Reeve, R. C., Bower, C. A., Brooks, R. H., & Gschwend, F. B. (1954). A comparison of the effects of exchangeable sodium and potassium upon the physical condition of soils. Soil Science Society of America Journal, 18(2), 130-132.
[316] Oster, J. D., & Sposito, G. (1980). The Gapon coefficient and the exchangeable sodium percentage‐sodium adsorption ratio relation. Soil Science Society of America Journal, 44(2), 258-260.
[317] Rafferty, K. (1999). Scaling in geothermal heat pump systems.
[318] Metcalf, W. (2003). Metcalf and Eddy wastewater engineering: treatment and reuse. Wastewater Engineering: Treatment and Reuse McGraw Hill. New York, NY, 384.
[319] Benefield, L. D., Judkins, J. F., & Weand, B. L. (1982). Process chemistry for water and wastewater treatment. Prentice Hall.
[320] Jiang, L. Q., Carter, B. R., Feely, R. A., Lauvset, S. K., & Olsen, A. (2019). Surface ocean pH and buffer capacity: past, present and future. Scientific reports, 9(1), 1-11.
[321] Flecha, S., Pérez, F. F., García-Lafuente, J., Sammartino, S., Ríos, A., & Huertas, I. E. (2015). Trends of pH decrease in the Mediterranean Sea through high frequency observational data: indication of ocean acidification in the basin. Scientific reports, 5(1), 1-8.
[322] Gerin, R., & POULAIN, P. (2005). Hydrographic structures and circulation outline of the Southeastern Mediterranean off the Egyptian coast. Borgo Grotta Gigante, 9(06), 05.
[323] El-Geziry, T. M., & Bryden, I. G. (2010). The circulation pattern in the Mediterranean Sea: issues for modeller consideration. Journal of Operational Oceanography, 3(2), 39-46.
[324] Hsu, P. C. (2022). Surface Current Variations and Hydrological Characteristics of the Penghu Channel in the Southeastern Taiwan Strait. Remote Sensing, 14(8), 1816.
[325] Pascual, M., Rives, B., Schunter, C., & Macpherson, E. (2017). Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS One, 12(5), e0176419.
[326] Lo, W. T., Hsieh, H. Y., Wu, L. J., Jian, H. B., Liu, D. C., & Su, W. C. (2010). Comparison of larval fish assemblages between during and after northeasterly monsoon in the waters around Taiwan, western North Pacific. Journal of Plankton Research, 32(7), 1079-1095.
[327] Ahmed, M., Shayya, W. H., Hoey, D., & Al-Handaly, J. (2001). Brine disposal from reverse osmosis desalination plants in Oman and the United Arab Emirates. Desalination, 133(2), 135-147.
[328] Lior, N., & Kim, D. (2018). Quantitative sustainability analysis of water desalination–A didactic example for reverse osmosis. Desalination, 431, 157-170.
[329] Melián-Martel, N., Sadhwani Alonso, J. J., & Pérez Báez, S. O. (2013). Reuse and management of brine in sustainable SWRO desalination plants. Desalination and Water Treatment, 51(1-3), 560-566.
[330] Ortega Méndez, J. A., Mendoza, H., Santiago, D. E., Aridane Rodríguez, F., Gil Lodos, M., & Carmona, L. (2012). Reuse of SWRO brine for the production of carotenoids from Dunaliella salina and removal of macronutrients. Desalination and Water Treatment, 49(1-3), 115-122.
[331] Ahmed, M., Arakel, A., Hoey, D., Thumarukudy, M. R., Goosen, M. F., Al-Haddabi, M., & Al-Belushi, A. (2003). Feasibility of salt production from inland RO desalination plant reject brine: a case study. Desalination, 158(1-3), 109-117.
[332] Fard, A. K., Rhadfi, T., Khraisheh, M., Atieh, M. A., Khraisheh, M., & Hilal, N. (2016). Reducing flux decline and fouling of direct contact membrane distillation by utilizing thermal brine from MSF desalination plant. Desalination, 379, 172-181.
[333] Thabit, M. S., Hawari, A. H., Ammar, M. H., Zaidi, S., Zaragoza, G., & Altaee, A. (2019). Evaluation of forward osmosis as a pretreatment process for multi stage flash seawater desalination. Desalination, 461, 22-29.
[334] Klaassen, K., Bormann, H., Klenke, T., & Liebezeit, G. (2008). The impact of hydrodynamics and texture on the infiltration of rain and marine waters into sand bank island sediments—aspects of infiltration and groundwater dynamics. Senckenbergiana maritima, 38(2), 163-171.
[335] Sandrin, T. R., Dowd, S. E., Herman, D. C., & Maier, R. M. (2009). Aquatic environments. In Environmental Microbiology (pp. 103-122). Academic Press.
[336] Srimuk, P., Lee, J., Fleischmann, S., Choudhury, S., Jäckel, N., Zeiger, M., ... & Presser, V. (2017). Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide. Journal of Materials Chemistry A, 5(30), 15640-15649.
[337] Nthunya, L. N., Maifadi, S., Mamba, B. B., Verliefde, A. R., & Mhlanga, S. D. (2018). Spectroscopic determination of water salinity in brackish surface water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa. Water, 10(8), 990.
[338] Shetye, S. S., Naik, H., Kurian, S., Shenoy, D., Kuniyil, N., Fernandes, M., & Hussain, A. (2020). pH variability off Goa (eastern Arabian Sea) and the response of sea urchin to ocean acidification scenarios. Marine Ecology, 41(5), e12614.
[339] Omer, W. (2010). Ocean acidification in the Arabian Sea and the Red Sea (Master's thesis).
[340] Mokhatab, S., Poe, W. A., & Mak, J. Y. (2018). Handbook of natural gas transmission and processing: principles and practices. Gulf professional publishing.
[341] Stephan, G. W., & MacGillavry, C. H. (1972). The crystal structure of nesquehonite, MgCO3. 3H2O. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 28(4), 1031-1033.
[342] Unluer, C., & Al-Tabbaa, A. (2011). Green Construction with Carbonating Reactive Magnesia Blocks: Effect of Cement and Water Contents.
[343] Yan, P. K., Wang, B., & Gao, Y. J. (2011). Study on synthesis of the high aspect ratios nesquehonite whiskers. In Advanced Materials Research (Vol. 239, pp. 1118-1122). Trans Tech Publications Ltd.
[344] Montes-Hernandez, G., Bah, M., & Renard, F. (2020). Mechanism of formation of engineered magnesite: A useful mineral to mitigate CO2 industrial emissions. Journal of CO2 Utilization, 35, 272-276.
[345] Zhao, L., Zhu, C., Ji, J., Chen, J., & Teng, H. H. (2013). Thermodynamic and kinetic effect of organic solvent on the nucleation of nesquehonite. Geochimica et Cosmochimica Acta, 106, 192-202.
[346] Chaka, A. M., & Felmy, A. R. (2014). Ab initio thermodynamic model for magnesium carbonates and hydrates. The Journal of Physical Chemistry A, 118(35), 7469-7488.
[347] Tanaka, J. Y., Kawano, J., Nagai, T., & Teng, H. (2019). Transformation process of amorphous magnesium carbonate in aqueous solution. Journal of Mineralogical and Petrological Sciences, 181119b.
[348] Deelman, J. C. (2003). Low-temperature formation of dolomite and magnesite. Eindhoven: Compact disc publications.
[349] Vágvölgyi, V., Hales, M., Frost, R. L., Locke, A., Kristóf, J., & Horváth, E. (2008). Conventional and controlled rate thermal analysis of nesquehonite Mg (HCO3)(OH)· 2 (H2O). Journal of thermal analysis and calorimetry, 94(2), 523-528.
[350] Ming, D. W., & Franklin, W. T. (1985). Synthesis and characterization of lansfordite and nesquehonite. Soil Science Society of America Journal, 49(5), 1303-1308.
[351] Setayeshmanesh, T., Parivazh, M. M., Abbasi, M., Osfouri, S., Dianat, M. J., & Akrami, M. (2022). Reducing the Environmental Impacts of Desalination Reject Brine Using Modified Solvay Process Based on Calcium Oxide. Sustainability, 14(4), 2298.
[352] Bird, R. B. (2002). Transport phenomena. Appl. Mech. Rev., 55(1), R1-R4.
[353] Vignolo, M., Romano, G., Martinelli, A., Bernini, C., & Siri, A. S. (2012). A novel process to produce amorphous nanosized boron useful for MgB2 synthesis. IEEE transactions on applied superconductivity, 22(4), 6200606-6200606.
[354] Litaiem, Y., & Dhahbi, M. (2015). Physicochemical properties of an hydrophobic ionic liquid (Aliquat 336) in a polar protic solvent (formamide) at different temperatures. Journal of Dispersion Science and Technology, 36(5), 641-651.
[355] Tait, B. K. (1993). Cobalt-nickel separation: the extraction of cobalt (II) and nickel (II) by Cyanex 301, Cyanex 302 and Cyanex 272. Hydrometallurgy, 32(3), 365-372.
[356] Liu, Q., Zhao, L., Zheng, Q., Mou, L., & Zhang, P. (2018). Excess molar volume and viscosity deviation of [C2mim][NTf2]/[C4mim][NTf2]+ DMC/DEC. Journal of Chemical & Engineering Data, 63(12), 4484-4496.
[357] Bradaric, C. J., Downard, A., Kennedy, C., Robertson, A. J., & Zhou, Y. (2003). Industrial preparation of phosphonium ionic liquids. Green Chemistry, 5(2), 143-152.
[358] Biswas, S., Pathak, P. N., Roy, S. B., & Manchanda, V. K. (2011). Uranium permeation studies from nitric acid medium across supported liquid membrane impregnated with PC88A and its mixtures with neutral oxodonors in n-paraffin as carriers. Separation Science and Technology, 46(4), 592-600.
[359] Nguyen, V. N. H., Nguyen, T. H., & Lee, M. S. (2020). Review on the comparison of the chemical reactivity of Cyanex 272, Cyanex 301 and Cyanex 302 for their application to metal separation from acid media. Metals, 10(8), 1105.
[360] Visakh, P. M., Nazarenko, O. B., Amelkovich, Y. A., & Melnikova, T. V. (2015, March). Thermal properties of epoxy composites filled with boric acid. In IOP Conference Series: Materials Science and Engineering (Vol. 81, No. 1, p. 012095). IOP Publishing.
[361] Mahdi, H., Davood, M., Mohsen, V., & Behzad, S. (2017). Boric acid production from a low-grade boron ore with kinetic considerations. Mod Chem Appl, 5(2), 1-7.
[362] Parsaei, M., Goodarzi, M. S., & Nasef, M. M. (2011, February). Adsorption study for removal of boron using ion exchange resin in Bach system. In International Conference on Environmental Sciences and Technology IPCBEE (Vol. 6, pp. 398-402).
[363] de la Fuente, M. D. M., & Camacho, E. M. (2005). Boron removal from industrial wastewaters by ion exchange: an analytical control parameter. Desalination, 181(1-3), 207-216.
[364] Yılmaz, A. E., Boncukcuoglu, R., Yılmaz, M. T., & Kocakerim, M. M. (2005). Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor. Journal of Hazardous Materials, 117(2-3), 221-226.
[365] Nasef, M. M., Nallappan, M., & Ujang, Z. (2014). Polymer-based chelating adsorbents for the selective removal of boron from water and wastewater: a review. Reactive and Functional Polymers, 85, 54-68.
[366] Kabay, N., Yılmaz, I., Yamac, S., Samatya, S., Yuksel, M., Yuksel, U., ... & Hirowatari, K. (2004). Removal and recovery of boron from geothermal wastewater by selective ion exchange resins. I. Laboratory tests. Reactive and Functional Polymers, 60, 163-170.
[367] Yilmaz, A. E., Boncukcuoğlu, R., & Kocakerim, M. M. (2007). A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution. Journal of hazardous materials, 149(2), 475-481.
[368] Köse, T. E., & Öztürk, N. (2008). Boron removal from aqueous solutions by ion-exchange resin: column sorption–elution studies. Journal of hazardous materials, 152(2), 744-749.
[369] Yilmaz, I., Kabay, N., Yuksel, M., Holdich, R., & Bryjak, M. (2007). Effect of ionic strength of solution on boron mass transfer by ion exchange separation. Separation Science and Technology, 42(5), 1013-1029.
[370] Ipek, I. Y., Kabay, N., Yuksel, M., Kirmizisakal, Ö., & Bryjak, M. (2008). Removal of boron from Balçova-Izmir geothermal water by ion exchange process: batch and column studies. Chemical Engineering Communications, 196(1-2), 277-289.
[371] Polowczyk, I., Cyganowski, P., Urbano, B. F., Rivas, B. L., Bryjak, M., & Kabay, N. (2017). Amberlite IRA-400 and IRA-743 chelating resins for the sorption and recovery of molybdenum (VI) and vanadium (V): equilibrium and kinetic studies. Hydrometallurgy, 169, 496-507.
[372] Darwish, N. B., Kochkodan, V., & Hilal, N. (2015). Boron removal from water with fractionized Amberlite IRA743 resin. Desalination, 370, 1-6.
[373] Xu, Y., & Jiang, J. Q. (2008). Technologies for boron removal. Industrial & Engineering Chemistry Research, 47(1), 16-24.
[374] Guo, J., Chen, X., & Zhang, Y. (2018). Improving the mechanical and electrical properties of ceramizable silicone rubber/halloysite composites and their ceramic residues by incorporation of different borates. Polymers, 10(4), 388.
[375] Pandya, S. Solvent Extraction of Copper from Chloride Solutions with LIX 984N.
[376] Khosravirad, M. M., Bakhtiari, F., Ghader, S., & Abkhoshk, E. (2020). An improved process methodology for extracting cobalt from zinc plant residues. Hydrometallurgy, 191, 105163.
[377] Long Le, H., Jeong, J., Lee, J. C., Pandey, B. D., Yoo, J. M., & Huyunh, T. H. (2011). Hydrometallurgical process for copper recovery from waste printed circuit boards (PCBs). Mineral Processing & Extractive Metallurgy Review, 32(2), 90-104.
[378] de San Miguel, E. R., Aguilar, J. C., Bernal, J. P., Ballinas, M. L., Rodriguez, M. T. J., De Gyves, J., & Chimmel, K. (1997). Extraction of Cu (II), Fe (III), Ga (III), Ni (II), In (III), Co (II), Zn (II) and Pb (II) with LIX® 984 Dissolved in n-Heptane. Hydrometallurgy, 47(1), 19-30.
[379] Shakibania, S., Mahmoudi, A., Mokmeli, M., & Rashchi, F. (2020). The effect of chloride ions on copper solvent extraction from sulfate-chloride medium using LIX 984N. Minerals Engineering, 156, 106498.
[380] Devi, N. B., & Nayak, B. (2014). Liquid-liquid extraction and separation of copper (II) and nickel (II) using LIX® 984N. Journal of the Southern African Institute of Mining and Metallurgy, 114(11), 937-943.
[381] Lohithakshan, K. V., & Aggarwal, S. K. (2011). Solvent extraction studies of plutonium (IV) by crown ether dicyclohexyl-18-crown-6 (DC18C6) in 1-butyl-3-methyl imidazolium hexafluorophosphate (C4mimPF6) and 1-hexyl-3-methyl imidazolium hexafluorophosphate (C6mimPF6) room temperature ionic liquids (RTIL). Radiochimica Acta, 99(4), 201-205.
[382] Du, X. G., Du, J. P., Zhang, J., Guo, X. M., Lu, W. W., & Yang, Z. Y. (2012). Synthesis of Ionic Liquids [BMIM] BF4 and [BMIM] PF6 under microwave irradiation by one-pot. In Advanced Materials Research (Vol. 496, pp. 84-87). Trans Tech Publications Ltd.
[383] Halili, J., Mele, A., Arbneshi, T., Halili, A. N., Mazreku, I., Berisha, A., ... & Mehmeti, V. (2015). Preliminary studies for the supercritical CO2 extraction of Cu (II) And Zn (II) ions by using Dithizone as chelating agent. Fresenius Environmental Bulletin, 24(12 A), 4492-4495.
[384] Hubicki, Z., & Kołodyńska, D. (2012). Selective removal of heavy metal ions from waters and waste waters using ion exchange methods. Ion exchange technologies, 7, 193-240.
[385] Morcali, M. H., Zeytuncu, B., Baysal, A., Akman, S., & Yucel, O. (2014). Adsorption of copper and zinc from sulfate media on a commercial sorbent. Journal of Environmental Chemical Engineering, 2(3), 1655-1662.
[386] Riley, A. L., Porter, C. P., & Ogden, M. D. (2021). Selective Recovery of Copper from a Synthetic Metalliferous Waste Stream Using the Thiourea-Functionalized Ion Exchange Resin Puromet MTS9140. Eng, 2(4), 512-530.
[387] Hubicki, Z., Gęca, M., & Kołodyńska, D. (2011). The effect of the presence of metatartaric acid on removal effectiveness of heavy metal ions on chelating ion exchangers. Environmental technology, 32(8), 805-816.
[388] Pehlivan, E., & Altun, T. (2007). Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. Journal of hazardous materials, 140(1-2), 299-307.
[389] Rengaraj, S., Yeon, J. W., Kim, Y., Jung, Y., Ha, Y. K., & Kim, W. H. (2007). Adsorption characteristics of Cu (II) onto ion exchange resins 252H and 1500H: Kinetics, isotherms and error analysis. Journal of Hazardous Materials, 143(1-2), 469-477.
[390] Perez, I. D., Botelho Junior, A. B., Aliprandini, P., & Espinosa, D. C. (2020). Copper recovery from nickel laterite with high‐iron content: A continuous process from mining waste. The Canadian Journal of Chemical Engineering, 98(4), 957-968.
[391] Valverde, J. L., de Lucas, A., Carmona, M., González, M., & Rodríguez, J. F. (2004). Equilibrium data of the exchange of Cu2+, Cd2+ and Zn2+ ions for H+ on the cationic exchanger Lewatit TP‐207. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 79(12), 1371-1375.
[392] Park, K. H., Parhi, P. K., & Kang, N. H. (2012). Studies on removal of low content copper from the sea nodule aqueous solution using the cationic resin tp 207. Separation Science and Technology, 47(10), 1531-1541.
[393] Botelho Junior, A. B., Jiménez Correa, M. M., Espinosa, D. C., Dreisinger, D., & Tenório, J. A. (2019). Recovery of Cu (II) from nickel laterite leach using prereduction and chelating resin extraction: Batch and continuous experiments. The Canadian Journal of Chemical Engineering, 97(4), 924-929.
[394] Zainol, Z., & Nicol, M. J. (2009). Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings. Hydrometallurgy, 96(4), 283-287.
[395] Botelho Junior, A. B., Espinosa, D. C. R., Dreisinger, D., & Tenório, J. A. S. (2019). Recovery of nickel and cobalt from nickel laterite leach solution using chelating resins and pre‐reducing process. The Canadian Journal of Chemical Engineering, 97(5), 1181-1190.
[396] Zhang, J., Yang, L., Dong, T., Pan, F., Xing, H., & Liu, H. (2018). Kinetics-controlled separation intensification for cesium and rubidium isolation from salt lake brine. Industrial & Engineering Chemistry Research, 57(12), 4399-4406.
[397] 孟素青, 李瑞琴, 丁建躍, & 管洪佩. (2013). 萃取法 (t—BAMBP) 提取鹵水中銣, 銫及其影響因素分析. 中國井礦鹽, 44(6), 12-14.
[398] Li, Z., Pranolo, Y., Zhu, Z., & Cheng, C. Y. (2017). Solvent extraction of cesium and rubidium from brine solutions using 4-tert-butyl-2-(α-methylbenzyl)-phenol. Hydrometallurgy, 171, 1-7.
[399] Lv, Y., Ma, B., Liu, Y., Wang, C., Zhang, W., & Chen, Y. (2022). Selective extraction of cesium from high concentration rubidium chloride leach liquor of lepidolite. Desalination, 530, 115673.
[400] Cabry, C. P., D’Andrea, L., Shimizu, K., Grillo, I., Li, P., Rogers, S., ... & Slattery, J. M. (2018). Exploring the bulk-phase structure of ionic liquid mixtures using small-angle neutron scattering. Faraday Discussions, 206, 265-289.
[401] Chen, W. S., Chen, Y. A., Lee, C. H., & Chen, Y. J. (2022). Recycling Vanadium and Proton-Exchange Membranes from Waste Vanadium Flow Batteries through Ion Exchange and Recast Methods. Materials, 15(11), 3749.
[402] Wu, J., Li, B., Liao, J., Feng, Y., Zhang, D., Zhao, J., ... & Liu, N. (2009). Behavior and analysis of cesium adsorption on montmorillonite mineral. Journal of Environmental Radioactivity, 100(10), 914-920.
[403] Tsai, S. C., Wang, T. H., Li, M. H., Wei, Y. Y., & Teng, S. P. (2009). Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. Journal of hazardous materials, 161(2-3), 854-861.
[404] Fang, Y., Zhao, G., Dai, W., Ma, L., & Ma, N. (2017). Enhanced adsorption of rubidium ion by a phenol@ MIL-101 (Cr) composite material. Microporous and Mesoporous Materials, 251, 51-57.
[405] Ye, X., Wu, Z., Li, W., Liu, H., Li, Q., Qing, B., ... & Ge, F. (2009). Rubidium and cesium ion adsorption by an ammonium molybdophosphate–calcium alginate composite adsorbent. Colloids and surfaces A: Physicochemical and engineering aspects, 342(1-3), 76-83.
[406] Sulaiman, M., Rahman, A. A., & Mohamed, N. S. (2016). Sol–gel synthesis and characterization of Li2CO3–Al2O3 composite solid electrolytes. Ionics, 22(3), 327-332.