簡易檢索 / 詳目顯示

研究生: 陳克戎
Chen, Ke-Rung
論文名稱: 應用微加熱器與微流體晶片於生成明膠微膠囊之研究
Generation of Gelatin Microcapsules by Using Heatable Microfluidic Chip
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 117
中文關鍵詞: 微加熱器微流體晶片明膠均一粒徑溫度敏感型材料
外文關鍵詞: Microheater, Microfluidic chip, Gelatin, Uniform size, Temperature-sensitive polymer materials
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用微機電製程技術在銦錫氧化物(Indium tin oxide, ITO)玻璃基板上製作成所需之微加熱器晶片,並且以驅動電壓控制可加熱式微流體晶片的加熱溫度;微加熱器在本實驗中目的為提供加熱明膠以生成不同粒徑之乳化球所需,本研究以不同輸入電壓控制溫度,而溫度有效地控制在26ºC增加至96ºC。本研究結合微加熱器及微流體晶片為可加熱式微流體晶片,利用微流體晶片中十字流道的鞘流原理產出均一粒徑之明膠乳化球,並且探討了分離相流量、連續相流量和驅動電壓對於生成之乳化球大小之關係。由實驗可得知,當固定分離相流量時,越大的分離相流量,將得以生成越小的乳化球;當固定分離相流量時,越高的驅動電壓,將得以生成越大的乳化球,實驗中粒徑分佈範圍介於45 μm ~120 μm之間。最後將此生成之明膠乳化球包覆維他命C,並置於磷酸鹽緩衝溶液中進行維他命C釋放,證明本研究所設計的可加熱式微流體晶片可用於溫度敏感型材料上,且能製備出均一粒徑之乳化球。

    In this study, the microheater is fabricated by using MEMS process on Indium tin oxide (ITO) glass slides, and it is driven by different voltage to control the temperature of the heatable microfluidic chip. The polydimethylsilcoxane (PDMS) microfluidic chip is fabricated by the same way, and combins with microheater which offers heat for generating different size of gelatin emulsions. The heatable microfluidic chip includes microheater and microfluidic chip, and it generates uniform-sized gelatin emulsions by flow focusing, which is made by cross shape microfluidic chips. In addition, we discussed the relationship of flow rate of dispersed phase, flow rate of continuous phase anddriven voltage to the size of generated emulsions. Results confirmd that when fixing the flow rate of disperse phase, increase the flow rate of continuous phase will generate smLler emulsions. On the other hand, when fixing flow rate of disperse phase, increase the driven voltage will generate larger emulsions. The size can be controlled from 59.9 µm to 105.2 µm in diameter, and then the microcapsules are placed in the phosphate buffer saline (PBS) for drug release. It confirm that the heatable microfluidic chip can be used to generate uniform-sized emulsions with temperature-sensitive polymer materials.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 藥物控制與釋放的重要性 3 1-3 藥物載體材料之介紹 6 1-3-1 明膠簡介及其應用 7 1-3-2 天然交聯劑梔子素簡介 10 1-4 微加熱器介紹及應用 11 1-5 微流體晶片的發展與應用 14 1-5-1 微機電系統技術與微流體晶片 14 1-5-2 微流體晶片之製程技術 17 1-5-3 微流體晶片之應用 20 1-6 研究動機與目的 24 1-7 研究架構 25 第二章 可加熱式微流體晶片之設計與製作 27 2-1 光罩設計 27 2-1-1 微加熱器 28 2-1-2 微流體晶片 31 2-2 加熱器晶片置放平台 33 2-3 微加熱器製程 40 2-3-1 玻璃清洗 41 2-3-2 微影 42 2-3-3 電極蝕刻 47 2-4 微流體晶片製作 50 2-4-1 母模製作 51 2-4-2 PDMS灌注成形技術及翻製流程 58 2-5 加熱晶片接合與組裝 61 第三章 實驗與研究方法 64 3-1 實驗儀器與設備 64 3-1-1 倒立式螢光光學顯微鏡 64 3-1-2 微量注射幫浦 65 3-1-3 真空抽氣系統 66 3-1-4 黏滯係數量測系統 67 3-1-5 紫外光-可見光吸收光譜儀 68 3-1-6 直流電源供應器 69 3-2 實驗藥品與配置方法 70 3-3 實驗方法 71 3-3-1 微加熱器測試 71 3-3-2 微加熱器結合微流體晶片於明膠溫度測試 72 3-3-3 生成不同粒徑之明膠乳化球實驗 73 3-3-4 黏滯係數量測 76 3-3-5 維他命C釋放實驗 77 第四章 結果與討論 78 4-1 微加熱器加熱效果分析 78 4-2 明膠於加熱器之溫度分析及黏滯係數之分析 81 4-2-1 微加熱器結合微流體晶片於加熱明膠之溫度分析 81 4-2-2 明膠黏滯係數量測分析 86 4-3 生成不同粒徑之明膠乳化球實驗結果 88 4-3-1 操控流量探討明膠乳化球之粒徑變化 94 4-3-2 操控驅動電壓探討明膠乳化球之粒徑變化 97 4-4 維他命C濃度釋放之分析 102 第五章 結論與建議 106 5-1 結論 106 5-2 建議 109 參考文獻 110

    [1] J. B. Lee, J. English, C. H. Ahn, and M. G. Allen, “Planarization techniques for vertically integrated metallic MEMS on silicon foundry circuits,” Journal of Micromechanics and Microengineering, 7, pp. 44-54, 1997.
    [2] M. Yano, F. Yamagishi, and T. Tsuda, “Optical MEMS for photonic switching-compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks,” IEEE Journal of Selected Topics in Quantum Electronics, 11, pp. 383-394, 2005.
    [3] C. L. Goldsmith, Z. M. Yao, S. Eshelman, and D. Denniston, “Performance of low-loss RF MEMS capacitive switches,” IEEE Microwave and Guided Wave Letters, 8, pp. 269-271, 1998.
    [4] A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. W. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proceedings of the IEEE, 92, pp. 6-21, 2004.
    [5] R. Langer, N. A. Peppas, “Advances in Biomaterials, Drug Delivery, and
    Bionanotechnology,” AIChE Journal, 49, pp. 2990, 2003.
    [6] L. Brannon-Peppas, “Polymers in controlled drug delivery,” Medical Plastics and Biomaterials, 4, pp. 34, 1997.
    [7] R. Langer, “Drug delivery and targeting,” Nature, 392, pp. 5,1998.
    [8] L. G. Griffith, “Polymeric biomaterials,” Acta Materialia, 48, pp. 263, 2000.
    [9] J. Siepmann and A. Göpferich, “Mathematical modeling of bioerodible, polymeric drug delivery systems,” Advanced Drug Delivery Reviews, 48, pp. 229, 2001.
    [10] K. S. Huang, K. Lu, C. S. Yeh, S. R. Chung, C. H. Lin, C. H. Yang, Y. S. Dong, “Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules,” Journal of Controlled Release, 137, pp. 15-19, 2009.
    [11] J. Liu, S. M. Zhang , P. P. Chen, L. Cheng, W. Zhou , W. X. Tang , Z. W. Chen, C. M. Ke, “Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels,” Journal of Materials Science-Materials in Medicine, 18, pp. 2205-2210, 2007.
    [12] T. Feczk´o, J. T´oth, J. Gyenis, “Comparison of the preparation of PLGA–BSA nano- and microparticles by PVA, poloxamer and PVP,” Colloids and Surfaces A-physicochemical and Engineering Aspects, 319, pp. 188-195, 2008.
    [13] D. Attwood, L. R. Currie and P. H. Elworthy, “Studies of solubilized micellar solutions. I. Phase studies and particle size analysis of solutions formed with nonionic surfactants,” Journal of Colloid and Interface Science, 46, pp. 249, 1974.
    [14] H. N. Bhargava, A. Narurkar and L. M. Lieb, “Using microemulsions for drug delivery,” Journal of Pharmacy Technology, 11, pp. 46, 1987.
    [15] D. W. Jopling, “The swelling of gelatin film. The effects of drying temperature and of conditioning the layers in atmospheres of high relative humidity,” Journal of Applied Chemistry, 6, pp.79~84, 1956.
    [16] A. G. Ward and A. Courts Ed., “The Science and Technology of Gelatin,” Acadimic Press, pp. 297-323, 1978.
    [17] S. Fujikawa, T. Yokota, K. Koga and J. Kumada, “The continuous hydrolysis of geniposide to genipin using immobilized β-glucosidase on calcium alginate gel,” Biotechnology Letters, 9, pp. 697-702, 1987.
    [18] A. Asai, “Bubble dynamics in boiling under high heat flux pulse heating,” Journal of Heat Transfer, 113, pp. 973, 1991.
    [19] L. Lin, “Microscale thermal bubble formation: thermophysical phenomena and applications,” Micro Thermophysical Engineering, 2, pp. 71-85, 1998.
    [20] M. U. Kopp, A. J. de Mello, A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science, 280, pp. 1046-1048, 1998.
    [21] E. T. Lagally, C. A. Emrich and R. A. Mathies, “Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis,” Lab on a Chip, 1 , pp. 102-107, 2001.
    [22] T. Fukuba, T. Yamamoto, T. Naganuma and T. Fujii, “Microfabricated flow-through device for DNA amplification—towards in situ gene analysis,” Chemical Engineering Journal, 101, pp. 151-156, 2004.
    [23] J. T. Cheng and C. L. Chen, “Active thermal management of on-chip hot spots using EWOD-driven droplet microfluidics,” Experiments in Fluids, 49, pp. 1349-1357, 2010.
    [24] J. L. Lin, M. H. Wu, C. Y. Kuo, K. D. Lee and Y. L. Shen, “Application of indium tin oxide (ITO)-based microheater chip with uniform thermal distribution for perfusion cell culture outside a cell incubator,” Biomed Microdevices, 12, pp. 389-398, 2010.
    [25] K. Seiler, D. J. Harrison and A. Manz, “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monition Systems,” Journal of Chromatography, 593, pp. 253-258, 1992.
    [26] Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie-International Edition, 37, pp. 551-575, 1998.
    [27] L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, and W.A. MacCrehan, “Fabrication of plastic microfluid channels by imprinting methods,” Analytical Chemistry, 69, pp. 4783-4789, 1997.
    [28] H. Becker and U. Heim, “Polymer hot embossing with silicon master structures,” Sensors and Materials, 11, pp. 297-304, 1999.
    [29] M. Heckele, W. Bacher, and K.D. Muller, “Hot embossing - The molding technique for plastic microstructures,” Microsystem Technologies, 4, pp. 122-124, 1998.
    [30] H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sensors and Actuators a-Physical, 83, pp. 130-135, 2000.
    [31] D. Snakenborg, H. Klank and J. P. Kutter, “Microstructure fabrication with a CO2 laser system,” Journal of Micromechanics and Microengineering, 14, pp. 182-189, 2004.
    [32] K. S. Huang, T. H. Lai and Y. C. Lin, “Manipulating the Generation of Ca-alginate Microspheres using Microfluidic Channels as a Carrier of Gold Nanoparticles,” Lab on a Chip, 6, pp. 954-957, 2006.
    [33] K. S. Huang, T. H. Lai, Y. C. Lin, “Using a Microfluidic Chip and Internal Gelation Reaction for Monodisperse Calcium Alginate Microparticles Generation,” Frontiers in Bioscience, 12, pp. 3061-3067, 2007.
    [34] R. M. McCormick, R. J. Nelson, M. G. A. Amigo, J. Benvegnu, and H. H. Hooper, “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Analytical Chemistry, 69, pp. 2626-2630, 1997.
    [35] P. J. Crosland-Taylor, “A device for counting small particles suspended in a fluid through a tube,” Nature, 171, pp. 37-38, 1953.
    [36] D. A. Drew and R. T. Lahey, “Phase-distribution mechanisms in turbulent low-quality 2-phase flow in a circular pipe,” Journal of Fluid Mechanics, 117, pp. 91-106, 1982.
    [37] S. L. Anna, N. Bontoux and H. A. Stone, “Formation of dispersions using "flow focusing" in microchannels,” Applied Physics Letters, 82, pp. 364-366, 2003.
    [38] W. Li, E. W. K. Young, M. Seo, Z. Nie, P. Garstecki, C. A. Simmons and E. Kumacheva, “Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators,” Soft Matter, 4, pp. 258-262, 2008.
    [39] I. Kobayashi, S. Mukataka and M. Nakajima, “Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions,” Langmuir, 21, pp. 7629-7632, 2005.
    [40] K. Liu, H. J. Ding, J. Liu, Y. Chen and X. Z. Zhao, “Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device,” Langmuir, 22, pp. 9453-9457, 2006.
    [41] H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R.M.A. Sullan, G.C. Walker and E. Kumacheva, “Microfluidic production of biopolymer microcapsules with controlled morphology,” Journal of the American Chemical Society, 128, pp. 12205-12210, 2006.
    [42] M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, 8, pp. 1063, 1994.
    [43] S. M. Sohel Murshed, S. H. Tan, N. T. Nguyen, T. N. Wong and L. Yobas, “Microdroplet formation of water and nanofluid in heat-induced microfluidic T-junction,” Microfluid Nanofluid, 6, pp. 253-259, 2008.
    [44] T. Kawakatsu, G. Tragardh, Ch. Tragardh, M. Nakajima, N. Oda, T. Yonemoto, “The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification,” Colloids and Surfaces, 179, pp. 29-37, 2001.
    [45] A. K. Srivastava, D. N. Ridhurkar and S. Wadhwa, “Floating microspheres of cimetidine: Formulation, characterization and in vitro evaluation,” Acta Pharmaceutica, 55, pp. 277-285, 2005.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE