簡易檢索 / 詳目顯示

研究生: 黃晨嘉
Huang, Chen-Chia
論文名稱: 具有不同表面層的p型GaN對光電解水的影響
The Effect of p-type GaN with Different Surface Layers on Photoelectrolysis of Water
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 光電化學水分解氮化鎵光腐蝕
外文關鍵詞: p-type Gallium Nitride, Corrosion, Photoelectrochemical
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能與海水是地球上十分豐富的資源,透過半導體的輔助,我們可以將太陽能轉換化學電勢,以此能量對海水進行光電化學反應,生成可以使用之能源。此能源轉換的優點在於其產物為氫氣與甲酸等等綠色能源,且此反應前的反應物(海水)與反應後的產物均非溫室氣體與污染物,相對石油煤氣燃燒後所產生的污染物環保,因此這過程可以視為一個綠色能源,若此技術繼續發展,則可以期待有朝一日成為永續的綠色能源轉換方式。
    本篇論文主要探討摻鎂的三五族氮化鎵光電元件用於光電化學反應,一般未摻雜的氮化鎵(undoped Gallium Nitride , u-GaN)因為本身有的缺陷(Nitrogen Vacancy)以及雜質影響等等,會使得未摻雜的氮化鎵變成偏向以電子為主要載子的n型氮化鎵(n-GaN)[1]。在進行光電化學反應時,氮化鎵照光生成電子電洞對,電子隨給予的正偏壓離開氮化鎵到達對電極,而剩下電洞則留在半導體內,從能帶圖可以預知電洞將累積於氮化鎵與電解液接面,因此若電洞沒有順利排出於電解液中,便很容易氧化氮化鎵中的鎵造成光腐蝕現象。因此在本實驗中透過在氮化鎵摻雜鎂,使氮化鎵轉為以電洞為主要載子(p-type),以此來提升氮化鎵的抗腐蝕功能。實驗中我們利用MOCVD成長氮化鎵,在製程中通入鎂使氮化鎵轉換成以電洞為主要載子的半導體(p-type),並透過在製程中通入不同濃度的鎂,以此來挑選出最適合的p型氮化鎵(p-GaN)。
    因為p型氮化鎵電流偏小,所以我們接著在其上覆蓋一層薄層n型氮化鎵(n-GaN)來提升p型氮化鎵中載子對分離機率,期望透過這步驟來提升p的整體光電流,實驗中我們發現透過這步驟的確有效的提升整體光電流。

    In this study, we use p- GaN as working electrode in photoelectrochemical system in order to prevent GaN from corrosion after long time reaction. To some p-GaN sample, we grow a thin film n-GaN on p-GaN , and then we periodical-stripe etch thin film n-GaN to expose p-GaN by Inductively Coupled Plasma Reactive-Ion Etching(ICP-RIE). To other p-GaN samples, we use the ion implantation technique to convert p-GaN to n-GaN. After the process of above, we comparing the photoelectrochemical data and choosing 3 times Mg concentration because the data of original Mg concentration demonstrate a not typical p-GaN characteristic. At the end, we deposit SiO2 on 3 times concentration of Mg p-GaN to get the higher photocuurent and we confirm the low corrosion of GaN from SEM image and Alpha Step data.

    摘要 I Abstract II Introduction II Material and Methods III Result and Discussion III Conclusion IV 致謝 VI 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 序論 1 1.1 前言 1 1.2氮化鎵材料用於光電化學背景 3 1-3 研究目的與實驗動機 7 第二章 理論基礎 9 2.1 光電化學系統 9 2.2 光電化學電極之行為 10 2.2.1 半導體於工作電極之行為 10 2.2.2 對電極 13 2.2.3參考電極 14 2.3化學電位與半導體能帶 17 2.3.1 標準氫電極與真空能階 17 2.3.2腐蝕現象與腐蝕電位 18 2.4 離子佈植原理 20 2.4.1 離子佈植機台原理 20 2.4.2 離子佈植製程 22 2.5 光致發光量測 24 第三章 實驗試片製成與實驗架構 26 3.1 p-type GaN試片製作 27 3.2 p型氮化鎵上方成長薄層n型氮化鎵進行ICP蝕刻試片製作 30 3.3 p型氮化鎵上方成長薄層n型氮化鎵成長二氧化矽試片製作 33 3.4 p型氮化鎵進行週期性條狀離子佈植 36 3.5 光電化學實驗架構 39 第四章 實驗結果與討論 41 4.1 p-type GaN於光電化學實驗 41 4.1.1 p-type 氮化鎵 簡述 41 4.1.2 p-type 氮化鎵 PL 41 4.1.3 p-GaN TLM量測 43 4.1.4 p-type氮化鎵於光電化學實驗 43 4.1.5 p-GaN IPCE量測 44 4.1.6 實驗結果與討論 44 4.2 p-GaN成長薄層n-GaN 進行ICP-RIE 50 4.2.1 成長薄層n-type GaN 50 4.2.2 試片簡述與命名 50 4.2.3實驗結果與討論 51 4.3 p-GaN成長薄層n-GaN上沉積二氧化矽 59 4.3.1試片簡述與命名 59 4.3.2 實驗結果與討論 59 4.4 在p型氮化鎵上進行矽佈植於光電化學實驗 67 4.4.1 試片簡述與命名 67 4.4.2 結果與討論 67 第五章 結論與展望 74 5.1 結論 74 5.2未來展望 77 參考文獻 78

    [1.] 台灣電力股份有限公司103 年度 研究計畫 546-4305-0301 完成報告
    [2.] 國研院政策中心 - 從數據看全球暖化
    [3.] J. Lédé, F. Lapicque, J. Villermaux, “ Production of hydrogen by direct thermal decomposition of water,” International Journal of Hydrogen Energy, vol. 8, pp. 675-679.(1983)
    [4.] W. Kreuter, H. Hofmann , “ Electrolysis: The important energy transformer in a world of sustainable energy,” International Journal of Hydrogen Energy, vol. 23, pp. 661-666.(1998)
    [5.] O.Khaselev, J.A.Turner, “A monolithic photovoltaic photoelectrochemical device for hydrogen production via water splitting,” Science, vol. 280, pp. 425-427.(1998)
    [6.] Fujishima, K. Honda, “ Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38. (1972)
    [7.] Fujishima, K. Kohayakawa, and K. Honda, “ Hydrogen production under sunlight with an electrochemical photocell,” Journal of the Electrochemical Society, vol. 122, pp. 1487-1489. (1975)
    [8.] A. J. Nozik, R. Memming, “ Physical chemistry of semiconductor-liquid interfaces,” The Journal of Physical Chemistry, vol. 100, pp. 13061-13078. (1996)
    [9.] I. M. Huygens, K. Strubbe, W. P. Gomes, “ Electrochemistry and Photoetching of n-GaN,” Journal of The Electrochemical Society, vol. 147, pp. 1797-1802. (2000)
    [10.] Katsushi FUJII, Takeshi KARASAWA and Kazuhiro OHKAWA, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation,” Japanese Journal of Applied Physics, vol. 44, No. 18, , pp. L 543–L 545. (2005)
    [11.] Karsten Müller , Kriston Brooks, and Tom Autrey, “Hydrogen Storage in Formic Acid: A Comparison of Process Options,” Energy Fuels, 31 (11), pp 12603–12611. (2017)
    [12.] S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, K. Ohkawa, “ Photo-induced CO2 Reduction with GaN Electrode in Aqueous System,” Applied Physics Express, vol. 4, p. 117101. (2011)
    [13.] M M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza and H. Dai, “High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation”,Science, vol 342, 836–840. (2013)
    [14.] Y. W. Chen, J. D. Prange, S. Duhnen, Y. Park, M. Gunji,C. E. D. Chidsey and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation”, Nature Materials vol 10 , 539–544. (2011)
    [15.] A. Paracchino, V. Laporte, K. Sivula, M. Gratzel and E. Thimsen, Nat. Mater., “Highly active oxide photocathode for photoelectrochemical water reduction ” , Nature Materials vol 10 , 456–461. (2011)
    [16.] B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg,O. Hansen and I. Chorkendorff, “ Using TiO2 as a Conductive Protective Layer for Photocathodic H2 Evolution”, J. Am. Chem. Soc. 135, 1057. (2013)
    [17.] Wilson A. Smith, Ian D. Sharp, Nicholas C. Strandwitz and Juan Bisquert, “Interfacial band-edge energetics for solar fuels production,” Energy Environ. Sci., 8, 2851—2862. (2015)
    [18.] I. M. Huygens, K. Strubbe, and W. P. Gomes, “Electrochemistry and Photoetching of n-GaN,” Journal of The Electrochemical Society, 147 (5) 1797-1802. (2000)
    [19.] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, andN. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev., vol. 110, no. 11, pp. 6446–6473. (2010)
    [20.] Katsushi FUJII and Kazuhiro OHKAWA ,”Photoelectrochemical Properties of p-Type GaN in Comparison with n-Type GaN,” Japanese Journal of Applied Physics, vol. 44, No. 28, pp. L 909–L 911. (2005)
    [21.] A. J. Bard, L. R. Faulkner, Eelectrochemical Methods: Fundamentals and Applications, Second Edition, New York: John Wiley & Sons, pp. 2–3. (2001)
    [22.] M.G. Kibria , S. Zhao , F.A. Chowdhury , Q. Wang , H.P.T. Nguyen , M.L. Trudeau, H. Guo & Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting, ” |Nature Communications,vol 5, Article number: 3825. (2014)
    [23.] Joel W. Ager, Matthew R. Shaner, Karl A. Walczak, Ian D. Sharpae and Shane Ardo, ” Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting,” Energy Environ. Sci., 8, 2811. (2015)
    [24.] J. Reichman, “The current-voltage characteristics of semiconductor-electrolyte junction photovoltaic cells,” Appl. Phys. Lett. 36(7). (1979)
    [25.] Ne’stor Guijarro, Mathieu S. Pre’vot and Kevin Sivula, “Surface modification of semiconductor photoelectrodes, ” Phys. Chem. Chem. Phys., 17, 15655—15674. (2015)
    [26.] W. Bott, “ Electrochemistry of Semiconductors,” Curr. Sep., pp. 87-91. (1998)
    [27.] S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes, “ Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons,”ACS Nano, vol. 4, pp. 1259-1278. (2010)
    [28.] A. J. Bard, L. R. Faulkner, “ Eelectrochemical Methods: Fundamentals and Applications”, Second Edition, New York: John Wiley & Sons, pp. 2–3. (2001)
    [29.] R. V. D. Krol, and M. Grätzel, “Photoelectrochemical Hydrogen Production”, New York: Springer Press, pp. 75–77. (2012)
    [30.] C. A. Grimes, O. K. Varghese, S. Ranjan, Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, ” | New York: Springer Press, pp. 126–131. (2008)
    [31.] Howard Reiss, Adam Heller, “The Absolute Potential of the Standard Hydrogen Electrode: A New Estimate,” J. Phys. Chem.,89, 4207-4213. (1985)
    [32.] Shiyou Chen, and Lin-Wang Wang, “Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution, ” | Chem. Mater., 24, 3659−3666. (2012)
    [33.] 蔣曉白,”半導體積體電路生產技術 從摻雜技術—離子佈植(IonImplantation)談起,” 國家奈米元件實驗室 奈米通訊 Nano Communication ,20卷,No.4
    [34.] Präsident der Humboldt-Universität zu Berlin: Prof. Dr. Hans Jürgen Prömel (in Vertretung) Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I: Prof. Thomas Buckhout, PhD, “Optical polarization anisotropy in nonpolar GaN thin films due to crystal symmetry and anisotropic strain”. (2005)
    [35.] J. K. Sheu, Y. K. Su, G. C. Chi, B. J. Pong, C. Y. Chen, C. N. Huang, and W. C. Chen,”Photoluminescence spectroscopy of Mg-doped GaN,” Journal of Applied Physics, Vol. 84, No. 8, 15 October (1998)
    [36.] Zu-Po Yang, Zhong-Han Xie, Chia-Ching Lin, and Ya-Ju Lee, ”Slanted n-ZnO nanorod arrays/p-GaN lightemitting diodes with strong ultraviolet emissions ” Optical Materials Express 404. (2015)
    [37.] M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, A. Salvador, B. N. Sverdlov,A. Botchkarev, H. Morkoc, and B. Goldenberg, ”Mechanisms of band‐edge emission in Mg‐doped p‐type GaNAppl, ” Applied Physics Letters, 68, Vol. 68, No. 14. (1996)
    [38.] N. Ben Sedrine , T. C. Esteves , J. Rodrigues , L. Rino , M. R. Correia , M. C. Sequeira , A. J. Neves , E. Alves , M. Bockowski , P. R. Edwards, K.P. O’Donnell, K. Lorenz & T. Monteiro, ”Photoluminescence studies of a perceived white light emission from a monolithic InGaN/GaN quantum well structure,” Scientific Reports volume5, Article number: 13739. (2015)
    [39.] B AlOtaibi, M Harati, S Fan, S Zhao, H P T Nguyen, M G Kibria and Z Mi, ”High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” IOP Publishing Ltd, Nanotechnology 24. (2013)
    [40.] Naoki KOBAYASHI , Toru NARUMI and Ryusuke MORITA, ”Hydrogen Evolution from p-GaN Cathode in Water under UV Light Irradiation, ” Japanese Journal of Applied Physics Vol. 44, No. 24, pp. L 784–L 786. (2005)
    [41.] Jinn-Kong Sheu, Po-Hsun Liao,a Hsin-Yan Chenga and Ming-Lun Lee,” Photoelectrochemical hydrogen generation from water using undoped GaN with selective-area Siimplanted stripes as a photoelectrode,” J. Mater. Chem. A, 5, 22625–22630.(2017)

    無法下載圖示 校內:2023-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE