簡易檢索 / 詳目顯示

研究生: 蕭俊龍
Hsiao, Chun-Lung
論文名稱: 鎳酸鑭和鉍銅硒氧的導電性質與熱電特性之研究
The Study on the Electrical Conductivity and Thermoelectric Property of LaNiO3 and BiCuSeO
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 140
中文關鍵詞: 鎳酸鑭鉍銅硒氧熱電
外文關鍵詞: Lanthanum Nickel Oxide, BiCuSeO, Thermoelectric
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討兩種氧化物熱電材料,包含n型的鎳酸鑭(LaNiO3)與p型的鉍銅硒氧(BiCuSeO)。鎳酸鑭是以溶膠–凝膠法製備,並通過對製程參數的控制,達到奈米晶粒結構。於燒結溫度500 C時,樣品中有氧化鎳和氧化鑭等雜相出現,提高燒結溫度至600 C時可得到純相之鎳酸鑭,晶粒大小為18 nm。若再提高燒結溫度至700 C以上時,於晶界區域會出現微小的析出物,經分析後確定為氧化鎳。於燒結溫度600~800 C製備之試片,其電阻率皆隨著量測溫度的增加而上升,表示此材料具有金屬導電特性。將溶膠鍍膜並置於不同的氣氛下(空氣、氧氣、氬氣)成長鎳酸鑭薄膜,探究其導電性與化學穩定性,結果顯示於氧氣下燒結可得到最佳之電阻率4.65×10-4 Ω-cm。成長於鋁酸鑭之磊晶薄膜,受壓縮應力影響,其氧空缺較少,電導率較高;成長於鈦酸鍶之磊晶薄膜,受拉伸應力而使得c軸受到壓縮,相當於給薄膜加壓,因而在高溫高真空中,化學穩定性最好,其脫氧速率最慢。西貝克係數的分析結果顯示,所有試片均為負值,室溫值約為-12 ~ -15 μV/K,顯示鎳酸鑭的多數電荷載子為電子,此結果亦被霍爾分析所證明。將鎳酸鑭摻雜氧化鎳並分析其性質,摻雜後雖然西貝克係數由-23 μV/K提升至-50 μV/K (550 K),但是電阻率亦上升兩個數量級。不同燒結溫度之樣品測量其熱傳導率,數值在室溫時為0.580 ~ 0.886 Wm−1K−1,並隨燒結溫度上升而有些微增加。根據優化後的電導率、西貝克係數和熱傳導率計算所得之熱電優值(ZT),於量測溫度550 K時可達到0.034,經由擬合後推估在量測溫度1000 K時可達0.15,可媲美氧化鋅、鈦酸鍶等n型氧化物熱電材料。
    p型之鉍銅硒氧熱電材料,西貝克係數較大,惟其電導仍有改善空間,因此提高電荷載子濃度是進一步提升ZT值的關鍵。本實驗是以固相燒結法在流動的氬氣氛中製備鉍銅硒氧,於燒結溫度550〜750 C時可得到純相之樣品,若再提高燒結溫度至850 C以上,則會分解出Cu2Se雜相。純相之鉍銅硒氧測得室溫電導率為2.88 S/cm,當鉍銅硒氧摻雜30 %的鈣後,其室溫電導率可提升至204 S/cm,但是其西貝克係數亦由290 μV/K下降至94 μV/K。此外,本研究利用X光電子能譜對鉍銅硒氧中各元素的價態,以及摻鈣後的變化進行了詳細分析。除了預期的Bi3+和Cu1+外,在未摻雜的鉍銅硒氧樣品中還偵測到Bi2+和Cu2+,而在摻雜Ca的樣品中發現有Bi4+、Cu2+和Cu3+。Ca被證實僅以2+價態存在,而Se的3d鍵結能譜出現兩個峰值,經由比對數據資料庫後發現,其中的一個常見於含Se之介金屬化合物,而另一個常見於含Se之氧化物,因此研判Se不僅和Cu有鍵結,Se和O之間也存在某種程度的鍵結。從觀察到的元素價態,可以了解未摻雜及摻鈣之鉍銅硒氧中的電荷補償機制以及p型載子的來源。本實驗數據顯示p型載子的來源除了其他研究團隊建議的Cu空缺外,應該還有Cu2+和Cu3+。

    LaNiO3 was synthesized by the sol-gel process in both bulk and thin film forms. Nanostructured bulk samples of a pure phase were obtained by sintering at 600 C. The chemical stability and its influence on the electric conductivity at high temperature were studied using the LaNiO3 films grown on the Si, LaAlO3 and SrTiO3 substrates. The compressive epitaxial film on LaAlO3 showed highest conductivity of 4.65×10-4 Ω-cm owing to the least amount of oxygen vacancy. The stretched epitaxial film on SrTiO3 showed best chemical stability with the lowest oxygen loss rate in vacuum, which was benefited from the extra pressure imposed by the shrinkage of the c-axis. LaNiO3 had the n-type charge carrier and showed a negative Seebeck coefficient (S) of about -15 μV/K at 300 K. NiO was added to LaNiO3 to form a composite, which showed an increased S of -50 μV/K at 550 K. However, the electric conductivity was also reduced by two orders of magnitude by the NiO addition. The thermal conductivity of bulk LaNiO3 increased with the sintering temperature, ranging between 0.580 to 0.886 Wm−1K−1 at 300 K. With the optimized S and electric and thermal conductivities, thermoelectric figure of merit (ZT) was calculated to be 0.034 at 550 K and may rise to 0.15 at 1000 K.
    Bi1-xCaxCuSeO (x=00.3) was sintered at 650 C in an airtight system flowing with argon. The composition and phase purity were confirmed by the energy dispersive X-ray spectroscopy, X-ray diffraction and transmission electron microscopy. Electric and thermoelectric measurements showed that the Ca doping resulted in an increase in p-type carrier concentration and therefore, an increase in the electric conductivity. This was accompanied by a reduction in the Seebeck coefficient. However, the overall result of the Ca doping was the increase in both the power factor and the ZT value. X-ray photoelectron spectroscopy was carried out to check the oxidation states of elements in Bi1-xCaxCuSeO, based on which the charge compensation mechanisms were proposed. The results indicate that the p-type carriers in Bi1-xCaxCuSeO may be correlated to the higher oxidation states of Cu ions (i.e. Cu2+ and Cu3+).

    摘要.....I Extended Abstract.....III 致謝.....XIV 目錄.....XV 表目錄.....XVIII 圖目錄.....XIX 第一章 緒論.....1 1-1 前言.....1 1-2 研究動機與目的.....5 第二章 熱電相關之理論基礎.....6 2-1 熱電理論基礎.....6 2-2 基本熱電效應.....6 2-2-1 Seebeck 效應.....6 2-2-2 Peltier 效應.....7 2-2-3 Thomson 效應.....9 2-2-4 材料的熱電優值.....12 2-3 熱電材料之效率.....14 2-3-1 熱電優值與能源轉換效率.....14 2-3-2 提升熱電材料效率的方法.....16 2-4 熱電材料的應用與發展.....25 2-5 熱電材料的選擇.....26 第三章 材料介紹與文獻回顧.....33 3-1 n型鎳酸鑭.....33 3-1-1 鎳酸鑭之文獻回顧.....33 3-1-2 鈣鈦礦結構.....38 3-1-3 磊晶之晶格匹配.....40 3-1-4 鎳酸鑭之導電氧化物介紹.....41 3-2 p型鉍銅硒氧.....43 3-2-1 鉍銅硒氧之文獻回顧.....43 3-2-2 鉍銅硒氧之氧化物介紹.....47 第四章 實驗方法與步驟.....48 4-1 溶膠–凝膠法.....48 4-1-1 溶膠–凝膠法的簡介.....48 4-1-2 溶膠–凝膠法的優缺點.....50 4-1-3 溶膠–凝膠法的鍍膜方式.....51 4-2 固相合成法.....53 4-3 本實驗之製程方法與步驟.....54 4-3-1 鎳酸鑭塊材.....54 4-3-1-1 實驗藥品.....54 4-3-1-2 實驗步驟.....54 4-3-2 鎳酸鑭薄膜.....55 4-3-2-1 實驗藥品.....55 4-3-2-2 實驗步驟.....55 4-3-3 鉍銅硒氧塊材.....56 4-3-3-1 實驗藥品.....56 4-3-3-2 實驗步驟.....56 4-4 實驗儀器與設備.....57 4-4-1 製程設備.....57 4-4-2 分析設備.....57 第五章 結果與討論.....68 5-1 n型鎳酸鑭之導電性質與熱電特性.....68 5-1-1 鎳酸鑭塊材之熱電特性.....68 5-1-2 鎳酸鑭薄膜之導電性質.....87 5-2 p型鉍銅硒氧之熱電特性.....101 第六章 結論.....122 6-1 n型鎳酸鑭熱電材料.....122 6-2 p型鉍銅硒氧熱電材料.....123 參考文獻.....124 附錄(個人著作).....139

    1. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Limited, London, (1957).

    2. P. E. Gray, The Dynamic Behavior of Thermoelectric Devices, Technology Press of The Massachusetts Institute of Technology, New York, (1960).

    3. D. M. Rowe, Thermoelectrics Handbook:Micro to Nano, CRC Press, New York, (2006).

    4. M. Ohtaki, “Oxide Thermoelectric Materials for Heat-to-Electricity Direct Energy Conversion,” Novel Carbon Resour. Sci. News, 3 (2010).

    5. T. J. Seebeck, Ueber Den Magnetismus Der Galvanischen Kette, Abh. K. Akad. Wiss. Berlin, 289 (1821).

    6. T. J. Seebeck, Magnetische Polarisation Der Metalle Und Erze Durch Temperatur- Differenz, Abh. K. Akad. Wiss. Berlin, 265 (1823).

    7. T. J. Seebeck, “Methode, Platinatiegel Auf Ihre Chemische Reinheit Gurch Thermo-Magnetismus Zu Prufen, ” Schweigger's J. Phys., 46, 101 (1826).

    8. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, “Enhancement of Thermoelectric Efficiency in PbTe by Distortion of The Electronic Density of States,” Science, 321, 554 (2008).

    9. M. Y. Jecog and S. W. Han, “Co-Sb- and Zn-Sb-Based Thin-Film Thermoelectric Modules for Temperature Sensors,” Sens. Mater., 27, 87 (2015).

    10. K. P. Ghatak and S. Bhattacharya, Thermoelectric Power in Nanostructured Materials:Strong Magnetic Fields, Springer, (2010).

    11. J. C. A. Peltier, “Nouvelles Experiences Sur La Caloricit'e Des Courants Electrique,” Ann. Chem. Phys., 56, 371 (1834).

    12. K. P. Pipe and R. J. Ram, “Bias-Dependent Peltier Coefficient and Internal Cooling in Bipolar Devices,” Phys. Rev. B, 66, 125316 (2002).

    13. M. F. Lin and D. S. Chuu, “Thermal Conductance and the Peltier Coefficient of Carbon Nanotubes,” Phys. Rev. B, 53, 11186 (1996).

    14. W. Thomson, “An Account of Carnot's Theory of the Motive Power of Heat,” Proc. R. Soc. Edinburgh, 16, 541 (1849).

    15. W. Thomson, “On A Mechanical Theory of Thermo-Electric Currents,” Philos. Mag., 3, 529 (1852).

    16. W. Thomson, “Account of Researches in Thermo-Electricity,” Philos. Mag., 8, 62 (1854).

    17. W. Thomson, “On the Electrodynamic Qualities of Metals,” Philos. Trans. R. Soc, London, 146, 649 (1856).

    18. M. Fardy, A. I. Hochbaum, J. Goldberger, M. M. Zhang and P. Yang, “Synthesis and Thermoelectrical Characterization of Lead Chalcogenide Nanowires,” Adv. Mater., 19, 3047 (2007).

    19. J. F. Li, W. S. Liu, L. D. Zhao and M. Zhou, “High-Performance Nanostructured Thermoelectric Materials,” NPG Asia Mater., 2, 152 (2010).

    20. P. V. Gorskyi, “Power Factor for Layered Thermoelectric Materials with A Closed Fermi Surface in a Quantizing Magnetic Field,” Ukr. J. Phys., 58, 4 (2013).

    21. A. Shakouri, “Recent Developments in Semiconductor Thermoelectric Physics and Materials,” Annu. Rev. Mater. Res., 41, 399 (2011).

    22. G. Heimel, L. Romaner and E. Zojer, “Understanding Metal/Organic Interfacial Properties,” SPIE Newsroom. DOI: 10.1117/2.1200801.1006.

    23. K. Kishimoto, M. Tsukamoto and T. Koyanagi, “Temperature Dependence of the Seebeck Coefficient and the Potential Barrier Scatter of N-Type PbTe Films Prepared on Heated Glass Substrates by RF Sputtering,” J. Appl. Phys., 92, 9 (2002).

    24. P. K. Rawat and P. Banerji, “The Effect of Microstructure and Metal-Oxide Barriers on Carrier Transport in Top-Down Processed, Low Density Nanograined N-Type PbTe,” RSC Adv., 4, 29818 (2014).

    25. K. Kishimoto, K. Yamamoto and T. Koyanagi, “Influences of Potential Barrier Scattering on the Thermoelectric Properties of Sintered N-Type PbTe with a Small Grain Size,” Jpn. J. Appl. Phys., 42, 501 (2003).

    26. G. Y. Wen, H. Y. Zhou and Z. L. Li, “Impact of Grain Size on the Seebeck Coefficient of Bulk Polycrystalline Thermoelectric Materials,” Chinese Sci Bull, 55, 1 (2010).

    27. G. Xie, Y. Guo, B. Li, L. Yang, K. Zhang, M. Tang and G. Zhang, “Phonon Surface Scattering Controlled Length Dependence of Thermal Conductivity of Silicon Nanowires,” Phys. Chem. Chem. Phys., 15, 14647 (2013).

    28. G. J. Snyder and E. S. Toberer, “Complex Thermoelectric Materials,” Nature Mater., 7, 105–114 (2008).

    29. G. A. Slack and V. Tsoukala, “Some Properties of Semiconducting IrSb3,” J. Appl. Phys., 76, 1665–1671 (1994).

    30. G. S. Nolas, J. L. Cohn and G. A. Slack, “Effect of Partial Void Filling on The Lattice Thermal Conductivity of Skutterudites,” Phys. Rev. B, 58, 164–170 (1998).

    31. L. D. Hicks and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Phys. Rev. B, 47, 16631 (1993).

    32. J. Sommerlatte, K. Nielsch and H. Bottner, “Thermoelektrische Multitalente,” Physik Journal, 6, 35 (2007).

    33. C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E=Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” J. Am. Chem. Soc., 115, 8706 (1993).

    34. T. Koga, X. Sun, S. B. Cronin and M. S. Dresselhaus, “Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Superlattices,” Appl. Phys. Lett. 73, 2950 (1998).

    35. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn, “Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit,” Nature 413, 597 (2001).

    36. T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science, 297, 2229 (2002).

    37. A. I. Boukai, Y. Bunimovich, J. T. Kheli, J. K. Yu, W. A. Goddard and J. R. Heath, “Silicon Nanowires as Efficient Thermoelectric Materials,” Nature 451, 168 (2008).

    38. T. M. Tritt and M. A. Subramanian, MRS BULLETIN, 31 (2006).

    39. D. Jiles, Introduction to the Electronic Properties of Materials, Chapman & Hall, New York, (1993).

    40. G. D. Mahan and M. Bartkowiak, “Wiedemann-Franz Law at Boundaries” Appl. Phys. Lett., 74, 953 (1999).

    41. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, “Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface,” Nat. Phys., 5, 438 (2009).

    42. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee,nX. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science Express, 1 (2008).

    43. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, “Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States,” Science, 321, 554 (2008).

    44. X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen and Z. F. Ren, “Enhanced Thermoelectric Figure of Merit in Nanostructured N-Type Silicon Germanium Bulk Alloy,” Appl. Phys. Lett., 93, 193121 (2008).

    45. T. Dahal, S. Gahlawat, Q. Jie, K. Dahal, Y. Lan, K. White and Z. Ren, “Thermoelectric and Mechanical Properties on Misch Metal Filled P-Type Skutterudites Mm0.9Fe4−xCoxSb12,” J. Appl. Phys., 117, 055101 (2015).

    46. G. S. Nolas, D. T. Morelli and T. M. Tritt, “SKUTTERUDITES:A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications,” Annu. Rev. Mater. Sci., 29, 89 (1999).

    47. X. Hou, Y. Zhou, L. Wang, W. Zhang, W. Zhang and L. Chen, “Growth and Thermoelectric Properties of Ba8Ga16Ge30 Clathrate Crystals,” J. Alloys Compd., 482, 544 (2009).

    48. J. Xu, J. Tang, K. Sato, Y. Tanabe, H. Miyasaka, M. Yamashita, S. Heguri and K. Tanigaki, “Low-Temperature Heat Capacity of Sr8Ga16Ge30 and Ba8Ga16Ge30:Tunneling States and Electron-Phonon Interaction in Clathrates,” Phys. Rev. B, 82, 085206 (2010).

    49. S. Populoh, M. H. Aguirre, O. C. Brunko, K. Galazka, Y. Lu and A. Weidenkaff, “High Figure of Merit in (Ti,Zr,Hf) NiSn Half-Heusler Alloys,” Scripta Mater., 66, 1073 (2012).

    50. C. Yu, T. J. Zhu, R. Z. Shi, Y. Zhang and X. B. Zhao, “High-Performance Half-Heusler Thermoelectric Materials Hf1−xZrxNiSn1−ySby Prepared by Levitation Melting and Spark Plasma Sintering,” Acta Mater., 57, 2757 (2009).

    51. W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon and T. M. Tritt, “Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds,” Nanomaterials, 2, 379 (2012).

    52. T. Tsubota, M. Ohtaki, K. Eguchi and H. Arai, “Thermoelectric Properties of Al-Doped ZnO as a Promising Oxidematerial for High-Temperature Thermoelectric Conversion,” J. Mater. Chem., 7, 85 (1997).

    53. B. Jalan and S. Stemmer, “Large Seebeck Coefficients and Thermoelectric Power Factor of La-Doped SrTiO3 Thin Films,” Appl. Phys. Lett., 97, 042106 (2010).

    54. J. Y. Tak, S. M. Choi, W. S. Seo and H. K. Cho, “Thermoelectric Properties of a Doped LaNiO3 Perovskite System Prepared Using a Spark-Plasma Sintering Process,” Electron. Mater. Lett., 9. 513 (2013).

    55. M. A. Madre, F. M. Costa, N. M. Ferreira, A. Sotelo, M. A. Torres, G. Constantinescu, S. Rasekh and J. C. Diez, “Preparation of High-Performance Ca3Co4O9 Thermoelectric Ceramics Produced by a New Two-Step method,” J. Eur. Ceram. Soc., 33, 1747 (2013).
    56. J. B. Torrance, P. Lacorre, and A. I. Nazzal, “Systematic Study of Insulator-Metal Transitions in Perovskites RNiO3 (R=Pr, Nd, Sm, Eu) Due to Closing of Charge-Transfer Gap,” Phys. Rev. B, 45, 8209 (1991).

    57. R. D. Sanchez, M. T. Causa, A. Caneiro, A. Butera, M. V. Regi, M. J. Sayagues, J. G. Calbet, F. G. Sanz and J. Rivas, “Metal-Insulator Transition in Oxygen-Deficient LaNiO3-x Perovskites, ” Phys. Rev. B, 54, 16574 (1996).

    58. A. Tiwari and K. P. Rajeev, “Electrical Transport in LaNiO3-δ (0 ≤ δ ≤ 0.14),” J. Phys. Condens. Matter, 11, 3291 (1999).

    59. J. Zhu, L. Zheng, Y. Zhang, X. H. Wei, W. B. Luo and Y. R. Li, “ Fabrication of Epitaxial Conductive LaNiO3 Films on Different Substrates by Pulsed Laser Ablation, ” Mater. Chem. Phys., 100, 451 (2006).

    60. L. Qiao and X. Bi, “Effect of Substrate Temperature on the Microstructure and Transport Properties of Highly (100)-Oriented LaNiO3-δ Films by Pure Argon Sputtering,” J. Cryst. Growth, 310, 3653 (2008).

    61. L. Qiao and X. Bi, “Direct Observation of Ni3+ and Ni2+ in Correlated LaNiO3−δ Films,” Epl, 93, 57002 (2011).

    62. R. Chiba, F. Yoshimura and Y. Sakurai, “An Investigation of LaNi1-xFexO3 as a Cathode Material for Solid Oxide Fuel Cells,” Solid State Ionics, 124, 281 (1999).

    63. M. Yang, L. Huo, H. Zhao, S. Gao and Z. Rong, “Electrical Properties and Acetone-Sensing Characteristics of LaNi1−xTixO3 Perovskite System Prepared by Amorphous Citrate Decomposition,” Sens. Actuators, B, 143, 111 (2009).

    64. T. Vaz and A.V. Salker, “Preparation Characterization and Catalytic CO Oxidation Stusies on LaNi1−xCoxO3 System,” Mater. Sci. Eng. B, 143, 81 (2007).

    65. T. Moriga, O. Usaka, I. Nakabayashi, T. Kinouchi, S. Kikkawa and F. Kanamaru, “Characterization of Oxygen-Deficient Phases Appearing in Reduction of Perovskite-Type LaNiO3 to La2Ni2O5,” Solid State Ionics, 79, 252 (1995).

    66. I. Alvarez, M. L. Veiga and C. Pico, “Metal–Insulator Transitions Induced by Doping in LaNiO3:LaNi0.95M0.05O3(M=Mo, W, Sb, Ti, Cu, Zn) Perovskites,” J. Solid State Chem., 136, 313 (1998).

    67. A. Tiwari, K. P. Rajeev and J. Narayan, “Low Temperature Electrical Transport in La1−xNdxNiO3−δ,” Solid State Commun., 121, 357 (2002).

    68. R. Funahashi, M. Mikami, S. Urata, M. Kitawaki, T. Kouuchi and K. Mizuno, “High-Throughput Screening of Thermoelectric Oxides and Power Generation Modules Consisting of Oxide Unicouples,” Meas. Sci. Technol., 16, 70 (2005).

    69. S. Pal, B. K. Chaudhuri, S. Neeleshwar, Y. Y. Chen and H. D. Yang, “Transport and Magnetic Properties of Metallic La1−xPbxNiO3−d(0 ≤ x ≤ 0.1),” J. Appl. Phys., 97, 043707 (2005).

    70. J. S. Zhou, L. G. Marshall and J. B. Goodenough, “Mass Enhancement Versus Stoner Enhancement in Strongly Correlated Metallic Perovskites:LaNiO3 and LaCuO3,” Phys. Rev. B, 89, 245138 (2014).

    71. J. R. Sun, G. H. Rao and J. K. Liang, “Crystal Structure and Electronic Transport Property of Perovskite Manganese Oxide with a Fixed Tolerance Factor,” Appl. Phys. Lett. 70, 1900 (1997).

    72. L. Q. Jiang, J. K. Guo, H. B. Liu, M. Zhu, X. Zhou, P. Wu and C. H. Li, “Prediction of Lattice Constant in Cubic Perovskites,” J. Phys. Chem. Solids 67, 1531 (2006).

    73. J. B. Goodenough, J. S. Zhou, F. Rivadulla and E. Winkler, “Bond-Length Fluctuations in Transition-Metal Oxoperovskites,” J. Solid State Chem., 175, 116 (2003).

    74. M. Ohring, Materials Science of Thin Films, A Publication of Academic Press U.S.A., (1991).

    75. J. H. V. D. Merwe, “Crystal Interfaces Part 2 Finite Overgrowths,” J. Appl. Phys., 34, 117 (1963).

    76. X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen and Z. F. Ren, “Enhanced Thermoelectric Figure of Merit in Nanostructured N-Type Silicon Germanium Bulk Alloy,” Appl. Phys. Lett., 93, 193121 (2008).

    77. M. Zinkevich and F. Aldinger, “Thermodynamic Analysis of the Ternary La–Ni–O System,” J. Alloys Compd., 375, 147 (2004).

    78. L. N. Kholodkovskaya, L. G. Akselrud, A. M. Kusainova, V. A. Dolgikh and B. A. Popovkin, “BiCuSeO:Synthesis and Crystal Structure,” Mater. Sci. Forum, 133, 693 (1993).

    79. A. M. Kusainova, P. S. Berdonosov and L. G. Akselrud, “New Layered Compounds with the General Composition (MO) (CuSe), Where M=Bi, Nd, Gd, Dy, and BiOCuS: Syntheses and Crystal Structure,” J. Solid State Chem., 112, 189 (1994).

    80. M. Yasukawa, K. Ueda and H. Hosono, “Thermoelectric Properties of Layered Oxyselenides La1-xSrxCuOSe (x=0 to 0.2),” J. Appl. Phys., 95, 3594 (2004).

    81. L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. P. Gaudart and N. Drago, “BiCuSeO Oxyselenides:New Promising Thermoelectric Materials,” Appl. Phys. Lett., 97, 092118 (2010).

    82. Y. Liu, L. D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B. P. Zhang, D. Berardan and N. Dragoe, “Remarkable Enhancement in Thermoelectric Performance of BiCuSeO by Cu Deficiencies,” J. Am. Chem. Soc., 133, 20112 (2011).

    83. J. Li, J. Sui, Y. Pei, C. Barreteau and D. Dragoe, “A High Thermoelectric Figure of Merit ZT > 1 in Ba Heavily Doped BiCuSeO Oxyselenides,” Energy Environ. Sci., 5, 8543 (2012).

    84. F. Li, J. F. Li, L. D. Zhao, K. Xiang, Y. Liu, B. P. Zhang, Y. H. Lin, C. W. Nana and H. M. Zhuc, “Polycrystalline BiCuSeO Oxide as a Potential Thermoelectric Material,” Energy Environ. Sci., 5, 7188 (2012).

    85. C. Barreteau, D. Berardan, E. Amzallag, L. D. Zhao and N. Dragoe, “Structural and Electronic Transport Properties in Sr-Doped BiCuSeO,” Chem. Mater., 24, 3168 (2012).

    86. D. Berardan, L. D. Zhao, C. Barreteau and N. Dragoe, “Low Temperature Transport Properties of the BiCuSeO System,” Phys. Status Solidi A, 11, 2273 (2012).

    87. L. Pan, D. Berardan, L. D. Zhao, C. Barreteau and N. Dragoe, “Thermoelectric Properties of Pb-Doped BiCuSeO Ceramics,” Appl. Phys. Lett., 102, 023902 (2013).

    88. Y. L. Pei, J. He, J. F. Li, F. Li, Q. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe and L. D. Zhao, “High Thermoelectric Performance of Oxyselenides:Intrinsically Low Thermal Conductivity of Ca-doped BiCuSeO,” NPG Asia Mat., 5, e47 (2013).

    89. J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei and L. D. Zhao, “Thermoelectric Properties of Mg Doped P-Type BiCuSeO Oxyselenides,” J. Alloys Compd., 551, 649 (2013).

    90. J. L. Lan, B. Zhan, Y. C. Liu, B. Zheng and Y. Liu, “Doping for Higher Thermoelectric Properties in P-Type BiCuSeO Oxyselenide,” Appl. Phys. Lett., 102, 123905 (2013).

    91. J. Sui, J. Li, J. He, Y. L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Caia and L. D. Zhao, “Texturation Boosts the Thermoelectric Performance of BiCuSeO Oxyselenides,” Energy Environ. Sci., 6, 2916 (2013).

    92. C. Barreteau, D. Berardan, L. D. Zhao and N. Dragoe, “Influence of Te Substitution on the Structural and Electronic Properties of Thermoelectric BiCuSeO,” J. Mater. Chem. A, 1, 2921 (2013).

    93. S. D. N. Luu and P. Vaqueiro, “Synthesis, Structural Characterisation and Thermoelectric Properties of Bi1-xPbxOCuSe,” J. Mater. Chem. A, 1, 12270 (2013).

    94. J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Caia and L. D. Zhao, “The Roles of Na Doping in BiCuSeO Oxyselenides as a Thermoelectric Material,” J. Mater. Chem. A, 2, 4903 (2014).

    95. Y. C. Liu, J. F. Liu, B. P. Zhang, Y. H. Lin, “Thermoelectric Properties of Ni Doped P-Type BiCuSeO Oxyselenides,” Key Eng. Mater., 602, 906 (2014).

    96. G. K. Ren, S. Butt, C. C. Zeng, Y. Liu, B. Zhan, J. Lan, Y. Lin and C. Nan, “Electrical and Thermal Transport Behavior in Zn-Doped BiCuSeO Oxyselenides,” J. Electron. Mater., 44, 1627, (2015).

    97. Y. C. Liu, Y. H. Zheng, B. Zhan, K. Chen., S. Butt, B. Zhang and Y. H. Lin, “Influence of Ag Doping on Thermoelectric Properties of BiCuSeO,” J. Eur. Ceram. Soc., 35, 845 (2015).

    98. D. Berardan, J. Li, E. Amzallag, S. Mitra, J. Sui, W. Cai and N. Dragoe, “Structure and Transport Properties of the BiCuSeO-BiCuSO Solid Solution,” Materials, 8, 1043 (2015).

    99. S. T. Dong, Y. Y. Lv, B. B. Zhang, F. Zhang, S. Yao, Y. B. Chen, J. Zhou, S. T. Zhang, Z. B. Gua and Y. F. Chena, “Strong Correlation of the Growth Mode and Electrical Properties of BiCuSeO Single Crystals with Growth Temperature,” Cryst. Eng. Comm., 17, 6136 (2015).

    100. G. K. Ren, J. l. Lan, S. Butt, K. J. Ventura, Y. H. Lin and C. W. Nan, “Enhanced Thermoelectric Properties in Pb-doped BiCuSeO Oxyselenides Prepared by Ultrafast Synthesis,” RSC Adv., 5, 69878 (2015).

    101. Z. Li, C. Xiao, S. J. Fan, Y. Deng, W. S. Zhang, B. J. Ye and Y. Xie, “Dual Vacancies: an Effective Strategy Realizing Synergistic Optimization of Thermoelectric Property in BiCuSeO,” J. Am. Chem. Soc., 137, 6587 (2015).

    102. J. Ding, B. Xu, Y. Lin, C. Nan and W. Liu, “Lattice Vibration Modes of the Layered Material BiCuSeO and First Principles Study of Its Thermoelectric Properties,” New J. Phys., 17, 083012 (2015).

    103. Y. C. Liu, J. X. Ding, B. Xu, J. Lan, Y. H. Zheng, B. Zhan, B. P. Zhang, Y. H. Lin and C. W. Nan, “Enhanced Thermoelectric Performance of La-Doped BiCuSeO by Tuning Band Structure, ” Appl. Phys. Lett., 106, 233903 (2015).

    104. K. D. Budd, S. K. Dey and D. A. Payne, “Sol-Gel Processing of PbTiO3, PbZrO3, PZT and PLZT Thin Films,” Btit. Ceram. Soc. Proc., 36, 107 (1985).

    105. S. K. Dey, K. D. Budd and D. A. Payne, “Thin-Film Ferroelectrics of PZT of Sol-Gel Processing,” IEEE Trans. UFFC., 35, 80 (1988).

    106. D. Grosso, “How to Exploit the Full Potential of the Dip-Coating Process to Better Control Film Formation,” J. Mater. Chem., 21, 17033 (2011).

    107. J. M. Sharp and S. A. Wentworth, “Kinetic Analysis of Phermogravimetric Data,” Anal. Chem., 41, 2060 (1969).

    108. P. A. Hiltner and I. M. Krieger, “Diffraction of Light by Ordered Suspensions,” J. Phys. Chem., 73, 2386 (1969).

    109. G. E. M. Jauncey, “The Scattering of X-Rays and Bragg's Law,” Proc. Natl. Acad. Sci. U.S.A., 10, 57 (1924).

    110. A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Phys. Rev., 56, 978 (1939).

    111. M. Born and E. Wolf, Principles of Optics 6th Edition, Pergamon Press, New York, (1980).

    112. E. Ruska, E and M. Knoll, “The Magnetic Concentrating Coil for Fast Electron Beams,” Z. techn. Physik, 12, 389 (1931).

    113. C. Wood, “High-Temperature Thermoelectric Energy Conversion Theory,” Energy Convers. Mgmt., 24, 317 (1984).

    114. K. P. Rajeev, G. V. Shivashankar and A. K. Raychaudhuri, “Low-Temperature Electronic Properties of a Normal Conducting Perovskite Oxide LaNiO3,” Sol. Stat. Comm., 79, 591 (1991).

    115. N. Gayathri, A. K. Raychaudhuri, X. Q. Xu, J. L. Peng and R. L. Greene, “Electronic Conduction in LaNiO3-δ : The Dependence on the Oxygen Stoichiometry δ,” J. Phys.: Condens. Matter, 10, 1323 (1998).

    116. A. Bulusua and D. G. Walkerb, “Review of Electronic Transport Models for Thermoelectric Materials,” Superlattices Microstruct., 44, 1 (2008).

    117. R. D. Barnard, Thermoelectricity in Metals and Alloys, Taylor & Francis, London (1972).

    118. R. D. Sanchez, M. T. Causa, A. Caneiro, A. Butera, M. V. Regi, M. J. Sayagues, J. G. Calbet, F. G. Sanz and J. Rivas, “Metal-Insulator Transition in Oxygen-Deficient LaNiO3−x Perovskites,” Phys. Rev. B, 54, 16574 (1996).

    119. M. J. Sayagues, M. V. Rej, A. Maneiro and J. M. G. Calbet, “Microstructural Characterization of the LaNiO3-y System,” J. Sol. Stat. Chem., 110, 295 (1994).

    120. M. J. Graf, S. K. Yip, J. A. Sauls and D. Rainer, “Electronic Thermal Conductivity and the Wiedemann-Franz Law for Unconventional Superconductors,” Phys. Rev. B, 53, 15147 (1996).

    121. S. Miyake, K. Yamamoto, S. Fujihara and T. Kimura, “(100)-Orientation of Pseudocubic Perovskite-Type LaNiO3 Thin Films on Glass Substrates via the Sol–Gel Process,” J. Am. Ceram. Soc., 85, 992 (2002).

    122. J. L. G. Munoz, J. R. Carvajal, P. Lacorre and J. B. Torrance, “Neutron-Diffraction Study of RNiO3 (R=La,Pr,Nd,Sm): Electronically Induced Structural Changes Across the Metal-Insulator Transition,” Phys. Rev. B, 46, 4414 (1992).

    123. Z. Z. Hui, X. W. Tang, R. H. Wei, L. Hu, J. Yang, H. M. Luo, J. M. Dai, W. H. Song, X. Z. Liu, X. B. Zhu and Y. P. Sun, “Facile Chemical Solution Deposition of Nanocrystalline CrN Thin Films with Low Magnetoresistance,” RSC Adv., 4, 12568 (2014).

    124. X. Qi, J. Y. Wang, C. J. Hung and J. C. Kuo, “You Have Full Text Access to This Content High-Purity FeSe1−x Superconductors Prepared by Solid-State Synthesis and Liquid Phase Processing,” J. Am. Ceram. Soc., 93, 3195 (2010).

    125. F. Li, T. R. Wei, F. Kang and J. F. Li, “Enhanced Thermoelectric Performance of Ca-doped BiCuSeO in a Wide Temperature Range,” J. Mater. Chem. A, 1, 11942 (2013).

    126. L. D. Zhao, J. Q. He, D. Berardan, Y. H. Lin, J. F. Li, C. W. Nan and N. Dragoe, “BiCuSeO Oxyselenides:New Promising Thermoelectric Materials,” Energy Environ. Sci., 7, 2900 (2014).

    127. C. L. Chen, H. Wang, Y. Y. Chen, T. Day and G. J. Snyder, “Thermoelectric Properties of P-Type Polycrystalline SnSe Doped with Ag,” J. Mater. Chem. A, 2, 11171 (2014).

    128. Y. C. Liu, J. L. Lan, B. Zhan, J. Ding, Y. Liu, Y. H. Lin, B. Zhang and C. W. Nan, “Thermoelectric Properties of Pb-Doped BiCuSeO Ceramics,”J. Am. Ceram. Soc., 96, 2710 (2013).

    129. C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg (Eds.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., USA, (1979).

    130. D. Briggs and M. P. Seah, Practical Surface Analysis, John Willey & Sons, New York, (1993).

    131. S. Marik, A. J. D. S. Garcia, C. Labrugere, E. Moran, O. Toulemonde and M. A. A. Franco, “Oxidation Induced Superconductivity and Mo/Cu Charge Equilibrium in Mo0.3Cu0.7Sr2ErCu2Oy,” Supercond. Sci. Technol., 28, 045007 (2015).

    132. H. Jaeger, S. Hofmann, G. Kaiser, K. Schulze and G. Petzow, “XPS and SAM Study of the High Tc Superconductor YBa2Cu3O7-x,” Phys. C, 153, 133 (1988).

    133. X. Hu, J. C. Yu and Q. Li, “Synthesis of Surface-Functionalized t-Se Microspheres via a Green Wet-Chemical Route,” J. Mater. Chem., 16, 748 (2006).

    134. A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V. A. Dolgikh and B. A. Popovkin, “New Layered Compounds with the General Composition (MO)(CuSe), Where M=Bi, Nd, Gd, Dy, and BiOCuS: Syntheses and Crystal Structre, ” J. Solid State Chem., 112, 189 (1994).

    135. J. S. G. Jeria, “An Empirical Way to Correct Some Drawbacks of Mulliken Popilation Analysis,” J. Chil. Chem. Soc., 54, 482 (2009).

    136. R. C. Dorca and P. Bultinck, “Quantum Mechanical Basis for Mulliken Population Analysis,” J. Math. Chem., 36, 231 (2004).

    137. F. D. Morrison, A. M. Coats, D. C. Sinclair and A. R. West, “Charge Compensation Mechanisms in La-Doped BaTiO3,” J. Electroceram., 6, 219 (2001).

    138. S. Sallis, L. F. J. Piper, J. Francis, J. Tate, H. Hiramatsu, T. Kamiya and H. Hosono, “Role of Lone Pair Electrons in Determining The Optoelectronic Properties of BiCuOSe,” Phys. Rev. B, 85, 085207 (2012).

    139. W. Xu, Y. Liu, L. D. Zhao, P. An, Y. H. Lin, A. Marcellief and Z. Wu, “Evidence of an Interlayer Charge Transfer Route in BiCu1-xSeO,” J. Mater. Chem., 1, 12154 (2013).

    140. H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, “Crystal Structures, Optoelectronic Properties, and Electronic Structures of Layered Oxychalcogenides MCuOCh (M=Bi, La;Ch=S, Se, Te):Effects of Electronic Configurations of M3+ Ions,” Chem. Mater., 20, 326 (2008).

    無法下載圖示 校內:2021-02-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE