| 研究生: |
林益丞 Lin, Yi-Cheng |
|---|---|
| 論文名稱: |
傳輸層連線之緩衝區模糊控制 |
| 指導教授: |
吳植森
Wu, Zhi-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 模糊比例-積分-微分控制器 、動態緩衝區管理 |
| 外文關鍵詞: | ns-2, Fuzzy Proportional Integral-Derivative Controlle, Active Queue Management |
| 相關次數: | 點閱:56 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TCP/IP協定是目前網際網路上最被廣泛使用的通訊協定,而當中的傳輸層流量佔了網路頻寬的一大部分,其中包含了常見的TCP(Transmission Control Protocol)及UDP(User Datagram Protocol)流量。可預見的是,未來對網路頻寬的需求量將有增無減,且使用者對服務品質的要求也將更為嚴格,因此,如何在現有的頻寬下避免及控制網路壅塞,一直以來都是網路管理者所重視的課題。對於解決網路壅塞的問題可分為兩個部分來探討,第一為端對端(End-To-End)的控制,也就是傳送端及接收端之間的協調。當壅塞情形發生時,傳送端接收到壅塞的訊息(Congestion Indication),即減少封包傳送的速率。常見的機制有TCP Tahoe、Reno、NewReno、SACK及Vegas等。Reno為網路上最為普遍建置的版本。第二為中介點(通常為路由器)的控制,根據RFC的分類分為封包的排程(Packet Scheduling)以及動態緩衝區管理(Active Queue Management),前者常見的有FIFO、FQ、CBQ等,後者則有Drop-tail、RED、CHOKe等。本論文之主要研究對象在於動態緩衝區管理。我們利用模糊理論能夠解決非線性及不確定因素的特性,設計一個模糊比例-積分-微分控制器(Fuzzy Proportional Integral-Derivative Controller, FPID)來改進並應用在路由器緩衝區管理的控制上。本論文中使用ns-2網路模擬程式來實作此控制機制,並利用相關的工具來計算其效能並與其他著名之緩衝區管理機制作比較。經由模擬的結果顯示,FPID機制可以解決因發送端發送速率不同所造成的不公平現象,也可以解決在某些情況下較慢進入系統的連線會分配到較少頻寬的不公平現象。而與TCP-不友善流量共存時,並不會過度懲罰而使其流量不穩定,FPID機制可以調整將TCP-不友善流量維持在一較為平穩的狀態。而其餘的TCP流量也大致能獲得公平的頻寬,這對於需要穩定傳輸速率的影音、多媒體資訊流而言,是較為適合的。
關鍵字:動態緩衝區管理(Active Queue Management)、模糊比例-積分-微分控制器(Fuzzy Proportional Integral-Derivative Controller)、ns-2
參考文獻
中文部分
孫宗瀛、楊英魁,「 Fuzzy控制:理論、實作與應用 」,台北市,全華,民國88年。
英文部分
Allman, M., Paxson, V., and Stevens, W., “TCP Congestion Control”, RFC2581, Apr. 1999.
Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., et al., “Recommendations on queue management and congestion avoidance in the Internet”, RFC 2309, 1998.
Brakmo, L. S., Malley, S. W., and Peterson, L. L., “TCP Vegas: New Techniques for Congestion Detection and Avoidance”, ACM SIGCOMM’94, pp. 24-35, 1994.
Brakmo, L. S. and Peterson, L. L., “TCP Vegas: End to End Congestion Avoidance on a Global Internet”, IEEE JSAC, vol. 13, no. 8, pp. 1465-1480, Oct. 1995.
Bonald, T., “Comparison of TCP Reno and TCP Vegas: efficiency and fairness”, Performance Evaluation 36-37, pp. 307-332, 1999.
Chang, C. J. and Cheng, R. G., “Traffic Control in an ATM Network Using Fuzzy Set Theory”, IEEE INFOCOM’94, vol. 3, pp. 1200-1207, 1994.
Floyd, S., “TCP and Successive Fast Retransmits”, Technical report, May 1995.
ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.
Floyd, S. and Fall, K., “Simulation-based comparisons of Tahoe, Reno, and SACK TCP”, ACM SIGCOMM’96, vol. 26, no. 3, pp. 5-21, Jul. 1996.
Floyd, S. and Fall, K., “Ns Simulator Tests for Random Early Detection Queue Management”, Lawrence Berkeley Laboratory, Apr. 1997.
Floyd, S. and Henderson, T., “The NewReno Modification to TCP’s Fast Recovery Algorithm”, RFC 2582, Apr. 1999.
Floyd, S. and Jacobson, V., "Random Early Detection gateways for Congestion Avoidance", IEEE/ACM Trans. Networking, vol. 1, no. 4, pp. 397-413, Aug. 1993.
Feng, W., Kandlur, D. D., Ma, D., and Shin, K. G.., "A Self-Configuring RED Gateway", IEEE INFOCOM’99, pp. 1320-1328. Mar. 1999.
Hollot, C., Misra, V., Towsley, D., and Gong, W., “Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED”, ACM SIGCOMM’00, pp. 151-160, Aug. 2000.
Hollot, C., Misra, V., Towsley, D., and Gong, W., “A Control Theoretic Analysis of RED”, IEEE INFOCOM’01, Apr. 2001a.
Hollot, C., Misra, V., Towsley, D., and Gong, W., “On Designing Improved Controllers for AQM Routers Supporting TCP Flows”, IEEE INFOCOM’01, Apr. 2001b.
Jacobson, V., “Congestion control and avoidance”, ACM SIGCOMM’88, pp. 314-329, 1988.
Li, W., “Design of a Hybrid Fuzzy Logic Proportional plus Conventional Integral-Derivative Controller”, IEEE Trans. on Fuzzy Systems, vol. 6, no. 4, pp. 449-463, 1998.
Mo, J., La, R. J., Anantharam, V., and Walrand, J., “Analysis and Comparison of
TCP Reno and Vegas”, IEEE INFOCOM’99, pp. 1556-1563, 1999.
Malki, H. A., Li, H. D., and Chen, G. R., “New Design and Stability Analysis of Fuzzy Proportional-Derivative Control System”, IEEE Trans. on Fuzzy Systems, vol. 2, no. 4, pp. 245-254, 1994.
Misir, D., Malki, H. A., and Chen, G.., “Design and Analysis of a Fuzzy Proportional-Integral-Derivative Controller”, Fuzzy Sets and Systems, pp. 297-314, 1996.
Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A., “TCP Selective Acknowledgment Options”, RFC 2018, Oct. 1996.
Ott, T., Lakshman, T., and Wong, L., “SRED: Stabilized RED”, IEEE INFOCOM’99, pp. 1346-1355, Mar. 1999.
Ohsaki, H. and Murata, M., “Steady State Analysis of the RED Gateway: Stability, Transient Behavior, and Parameter Setting”, IEICE Trans. COMM’02, vol. 85, no. 1, Jan. 2002.
Postel, J., “User Datagram Protocol”, RFC768, Aug. 1980.
Postel, J., “Transmission Control Protocol”, RFC 793, Sep. 1981.
Phillis, Y. A. and Zhang, R., “Fuzzy service rate control of queuing system”, IEEE Trans. on Systems, Man, Cybernetics, vol. 29, no. 4, pp. 503-517, Aug. 1999.
Pan, R., Prabkakar, B., and Psounis, K., “CHOKe: A stateless active queue management scheme for approximating fair bandwidth allocation”, IEEE INFOCOM’00, 2000.
Passino, K. M. and Yurkovich, S., “Fuzzy Control”, Addison Wesley Inc., California, 1998.
Sun Microsystems Laboratories., “Tcl/Tk research at Sun Microsystems Laboratories”, http://www.sun.com/research/tcl.
Stevens, W., “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms”, RFC2001, Jan. 1997.
Tanenbaum, A. S., “Computer Networks. (3nd ed.)”, Prentice-Hall Inc., Englewoods Cliffs, New Jersey. 1996.
UC Berkeley., “UCB/LBNL/VINT Network Simulator – ns (version 2)”, http://www-mesh.cs.berkeley.edu/ns.
Zadeh, L. A., “Fuzzy sets”, Information and Control, vol. 8, pp. 338-353, 1965.
Zadeh, L. A., “Outline of a new approach to the analysis of complex systems and decision processes”, IEEE Trans. on Systems, Man, Cybernetics, vol. 3, no. 1, pp. 28-44, 1973.