| 研究生: |
李鈞耀 Lee, Jing-Yao |
|---|---|
| 論文名稱: |
以光調制光譜研究砷化銦鋁表面-本徵-P+結構的表面性質 Photoreflectance Studies of the Surface Property of InAlAs Surface-Intrinsic-P+ structures |
| 指導教授: |
黃正雄
Hwang, Jenn-Shyong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 表面態 、砷化銦鋁 、光調制光譜 |
| 外文關鍵詞: | photoreflectance, InAlAs, surface state |
| 相關次數: | 點閱:60 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光調制光譜具有非接觸性及非破壞性的特點,以及寬廣的操作溫度、抑制背景效應等優點,是研究半導體材料和半導體微結構的光電特性的一項普遍及有力的工具。本論文將以光調制光譜研究與基板晶格匹配的In 0.52Al0.48As表面-本徵-P+ (SIP+)結構和表面-本徵-N+ (SIN+)結構的光電特性,如內建電場、表面勢壘、表面費米能階及表面態密度等等。
論文中的第一部分,利用光調制光譜研究In 0.52Al0.48As表面-本徵-P+ (SIP+)結構的樣品,在不同頂層厚度或不同緩衝層摻雜濃度下的表面費米能階。從表面費米能階隨著頂層厚度及緩衝層摻雜濃度的變化裡,可以了解某些載子的動力行為。
論文的第二部分是量測不同激發光強度下的PR光譜,根據熱游子輻射理論和電流傳輸理論,從PR訊號的強度隨著激發光強度的變化中,求得樣品的表面勢壘高度和表面態密度。
論文的第三部份測量樣品於不同溫度下的PR光譜,從PR光譜中的FKOs求得樣品的內建電場和表面勢壘高度,再利用表面勢壘高度隨溫度的變化,可以決定樣品的費米能階和表面態密度的分佈,所得到的結果和變化激發光強度所得到的結果是相符合的。最後比較SIP+和SIN+結構的樣品,探討載子的動力行為以及形成表面態的機制。此外比較SIP+和SIN+的結果,發現SIN+的費米能階距導帶的能量差加上SIP+的費米能階至其價帶的能量差,恰為半導體材料In 0.52Al0.48As的能隙。
Modulation spectroscopy of Photoreflectance (PR) is widely used to study and characterize bulk semiconductors and semiconductor microstructures. PR is particularly useful for characterizing devices , since it is not only nondestructive and contactless , but can also be performed in a variety of transparent ambients and over a broad range of temperature. In this thesis PR was employed to investigate the electro-optic properties such as built-in electric field, surface barrier height and surface state densities etc.., for series of lattice matched InAlAs surface-intrinsic-N+ (SIN+) andsurface-intrinsic-P+ (SIP+) structures.
In the first part of this thesis, we used PR to investigate the surface Fermi levels of a series of lattice-matched In0.52Al0.48As surface-intrinsic-P+ structures having different undoped thickness and/or different doping concentrations. From the variation of Fermi level as a function of undoped thickness and doping concentration, some dynamic properties of the carries on surface can be understood.
In the second part of this thesis, PR spectra were measured under various pump beam intensities. Based on the thermonic emission theory amd current-transport theory, the surface state densities as well as surface barrier heights were determined from the dependence of the PR intensity or the pump beam power.
In the third part of this thesis, PR spectra were measured at various temperatures. Built-in electric field and surface barrier height were derived from the Franz-Keldysh oscillations (FKOs) in the PR spectra. Surface state density and surface Fermi level were then determined from the surface barrier height as a function of temperature. Results from different approaches are compatible and comparison in the results of SIN+ and SIP+ and reveal the mechanism of the surface states.
In addition, by comparing the results from SIN+ and SIP+ structure. We found that the energy from the surface Fermi level to the conduction band edge at surface in SIN+ structure, plus the energy from the surface Fermi level to the valence band edge at surface equivalent the band gap energy of the semiconductor material In0.52Al0.48As.
1. See, for example, K. onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401(1986)
2. S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444(1986)
3. R. Dingle, W. Wiegman, and C. H. Henry, Phy. Rev. Lett. 33,827(1974)
4. C. Weisbuch, R. C. Miller, R.Dingle, A.C. Gossard, and W. Wiegmann, Solid
State Commu. 37,219(1981)
5. D. Vignaud, X. Wallart, F. Mollot, and B. Sermage, J. Appl. Phys. 84,
2138(1998)
6. A. C. Wright and J. O. Williams, Mat. Letts. 3, 80(1985); R. D. Dupuis, R.C.
Miller and P. M. Petroff, Mat. Letts. 3,398(1985)
7. J. S. Hwang, W. Y. Chou, M. C. Hung, J. S. Wang and H. H. Lin, J. Appl. Phys.
82, 3888(1997)
8. M. D. Pashley, K. W. Haberern, R. M. Feenstra and P. D. Kirchner, Phys. Rev.
B48, 4612(1993)
9. H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58,
1429(1987)
10. H. Shen and M. Dutta, J. Appl. Phys. 78, 2151(1995)
11. C. M. Lai, F. Y. Chang, C. W. Chang, C. H. Kao, H. H. Lin, G. J. Jan and
Johnson Lee, Appl. Phys. Lett. 82, 3895(2003)
12. X. Yin, H-M. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G.
D. Pettit, and J. M. Woodall, J. Vac. Scl. Technol. A10, 131(1992)
13. Weimin Zhou, M. Dutta, H. Shen, J. Pamulapati, Brian R. Bennett, Clive H.
Perry, David W. Weyburne, J. Appl. Phys. 73, 1266(1993)
14. T. Kanata, M. Matsunaga, H. Takakura, Y. Hamakawa and T. Nishino, J. Appl.
Phys. 68, 5309(1990)
15. D. Yan, E. Look, X. Yin, Fred H. Pollak and J. M. Woodall, Appl. Phys. Lett.
65, 186(1994)
16. J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W.
David, and Z. Hang, Appl. Phys. Lett. 64, 3314(1994)
17. W. Y. Chou, G. S. Chang, W. C. Hwang, and J. S. Hwang, J. Appl. Phys. 83,
3690(1998)
18. J. S. Hwang, Y. C. Wang, W. Y. Chou, and S. L. Tyan, J. Appl. Phys. 83,
2857(1998)
19. G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, J. Appl.
Phys. 86, 1765(1999)
20. N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081
21. D. E. Aspnes, in M. Balkanski, Handbook on Semiconductors, Vol. 2,
North-Holland, New York, 1980, p.109; also Surf. Sci, 37, 418(1973)
22. D. E. Aspnes, Phys. Rev. B10, 4228(1974)
23. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Ysai, D. G. Liu and C. P. Lee, J.
Appl. Phys. 72, 1065(1992)
24. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C.
Ito and D. McIntyre, J. Cryst. Growth, 93, 481(1988)
25. D. E. Aspnes and A. A. Studna, Phys. Rev. B7, 4605(1973)
26. C. Van Hoof, K. Deneffe, J. DeBoeck, D. J. Arent, and G. Borghs, Appl. Phys.
Lett. 54, 608(1989)
27. J. S. Hwang, C. C. Chang, M. F. Chen, C. C. Chen, K. I. Lin, F. C. Tang, M.
Hong and J. Kwo, J. Appl. Phys. 94, 348(2003)
28. J. S. Hwang, G. S. Chang, W. C. Hwang, and W. J. Chen, J. Appl. Phys. 89,
1771(2001)
29. Y. P. Varshni, Physica 34, 149(1967)
30. 施敏, 半導體元件物理與製作技術(第二版),(國立交通大學出版社,新竹), p180
31. J. L. Freeouf, and J. M. Woodall, Appl. Phys. Lett. 39, 727(1981)
32. W. E. Spicer, Z. Liliental-Weber, E. Weber, N. Newman, T. Kendelewicz, R.
Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, J. Vac. Scl. Technol.
B6, 1245(1988)
33. J. M. Garland, H. Abad, M. Viccaro and P. M. Raccah, Appl. Phys. Lett. 52,
1176(1988)
34. R. N. Bhattacharya, H. Shen, P. Parayanthal, Fred H. Pollak, T. Coutts and H.
Aharoni, Phys. Rev. B37, 4044(1988)
35. M. D. Pashley, K. W. Haberern and R. M. Feenstra, J. Vac. Scl. Technol. B
10,1874(1992)
36. F. H. Pollak and H. Shen, J. Cryst. Growth 98, 53(1989)
37. Yichun Yin, D. Yan, Fred H. Pollak, G. D. Pettit and J. M. Woodall, Phys.
Rev. B43, 12138(1991)
38. S. L. Tyan, M. L. Lee, Y. C. Wang, W. Y. Chou, and J. S. Hwang, J. Vac. Scl.
Technol. B13, 1010(1995)
39. H. Shen, W. Zhou, J. Pamulapati and F. Ren, Appl. Phys. Lett. 74, 1430(1999)
40. Donald A. Neamen, 半導體物理及元件(第三版),(台商圖書有限公司,台北), p159