| 研究生: |
昌增榮 Chang, Zeng-Rong |
|---|---|
| 論文名稱: |
鋁薄膜陽極處理多孔性氧化層結構之特性研究 The characteristics of porous anodic oxide structure formed on aluminum thin film |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 太陽能電池 、阻障層 、鋁薄膜 、多孔氧化鋁 、陽極處理 |
| 外文關鍵詞: | barrier, solar cell, anodizing, porous alumina, aluminum thin film |
| 相關次數: | 點閱:106 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以探討鋁薄膜陽極處理所生成之多孔氧化膜為主軸,透過SEM對多孔氧化膜表面形貌與剖面結構進行分析,並配合陽極處理過程中電壓電流對時間的關係,討論胞孔的生成機制,以及電壓大小、電解液溫度對多孔結構之影響。最後將陽極處理的胞孔孔距與準分子雷射再結晶的多晶矽尺寸作比較,找出適合的參數,以將多孔氧化鋁膜應用於新型多晶矽太陽能電池。
陽極處理電壓在60V與80V之下,氧化膜的阻障層厚度約都在50 nm,超過80V時阻障層厚度會隨電壓上升而變厚,電壓140V時平均厚度增加至200 nm;在電壓不超過100V時氧化膜胞孔孔壁厚度約在60~70 nm左右,當電壓大於100V時孔壁厚度呈線性增加的趨勢,電壓140V時孔壁之平均厚度為206 nm;在電壓60V與140V時平均孔距分別為134 nm及329 nm,胞孔平均孔距會隨電壓上升而變大;120V-40V之降壓反應後氧化膜的胞孔孔距、孔壁厚度、阻障層厚度分別為255nm、145 nm、73 nm。
陽極處理電壓120V的胞孔孔距與雷射照射參數450 mJ/cm2之下的晶粒尺寸相差不遠,而120V-40V之降壓處理與120V長時間處理後兩者的胞孔孔距非常相近,故可用降壓處理調整胞孔結構,以滿足在太陽能電池應用上的需求。
The research mainly explores the porous oxide from anodic aluminum thin film: to analyze the surface morphology and section structure of the porous oxidized membrane through SEM, and to match up the voltage- current-time relationship during anodizing process to discuss the formation of the pores and the influence of voltage and electrolyte temperature on the porous structure. Eventually, we compare the anodic interpore distance with the size of poly-Si from Excimer Laser re-crystallization to find out the most suitable parameter. It is for applying the porous oxidized aluminum thin film to the new type poly-Si solar cell.
The depth of the alumina barrier is about 50nm when using 60V and 80V of anodizing voltage. When the voltage is above 80V, the increase of voltage will result in the thicker barrier. The barrier thickness adds up to 200nm while voltage rises to 140V. The wall thickness of the pore structure is about 60~70nm under 100V, and it will increase linearly to 206nm while the voltage rises to 140V. The distances between pores are 134nm and 329nm respectively when voltages are 60V and 140V. The average distance will become farther with the mounting voltage. After 120V-40V reducing voltage process, the depth of barrier is 73nm, the wall thickness is about 145nm, the interpore distance is about 255nm.
The interpore distance after anodizing with 120V and the size of crystals under laser parameter of 450 mJ/cm2 are similar. Comparing the interpore distance after 120V-40V reducing voltage process and 120V long-term anodizing, we can discover that they are alike. So we can utilize the former process to adjust the pore structure for the application of solar cell.
1.林文全, “KrF準分子雷射再結晶非晶矽薄膜應用於太陽能電池之研究,” 國立成功大
學機械研究所, 碩士論文, 2003.6.
2.方季達, “太陽能電池產業發展現況,” OPTOLINK, vol. 26, pp.22-26, 2000.
3.V. Surganov, “Planarized thin film inductors and capacitors for hybrid
integrated circuits made of aluminum and anodic alumina,” IEEE
Transactions on Components, Packaging and Manufacturing Technology Part B:
Advanced Packaging, vol. 17, pp.197-200, 1994.
4.V. Surganov, and A. Mozalev, “Planar aluminum interconnection formed by
electrochemical anodizing technique,” Microelectronic Engineering, vol.
37, pp. 329-334, 1997.
5.T. W. Hickmott, “Voltage-dependent dielectric breakdown and voltage-
controlled negative resistance in anodized Al-Al2O3-Au diodes,” Journal of
Applied Physics, vol. 88, pp.2805-2812, 2000.
6.T. W. Hickmott, “Interface states at the anodized Al2O3-metal interface,”
Journal of Applied Physics, vol. 89, pp.5502-5508, 2001.
7.O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of
hexagonal pore arrays in anodic alumina,” Applied Physics Letters, vol.
72, pp.1173-1175, 1998.
8.N. M. Nahar, G. H. Mo, and A. Ignatiev, “Development of an Al2O3-Co
selective absorber for solar collectors,” Thin Solid Films, vol. 172, pp.19- 25, 1989.
9.Sunil Kumar Thamida, and Hsueh-Chia Chang, “Nanoscale pore formation
dynamics during aluminum anodization,” Chaos, vol. 12, pp.240-251, 2002.
10.Feiyue li, Lan Zhang, and Robert M. Metzger, “On the growth of highly
ordered pores in anodizied alumiunm oxide,” Chem. Mater., vol. 10, pp.2470-
2480, 1998.
11.A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal
pore arrays with a 50-420 nm interpore distance formed by self-organization
in anodic,” Journal of Applied Physics, vol. 84, pp.6023-6026, 1998.
12.I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, and G. Marx, “The
study of the volume expansion of aluminum during porous oxide firmation at
galvanostatic regime,” Applied Surface Science, vol. 222, pp.215-225, 2004.
13.I. Vrublevsky, V. Parkoun, J. Schreckenbach, and G. Marx, “Study of
porous oxide film growth on aluminum in oxalic acid using a re-anodizing
technique,” Applied Surface Science, vol. 227, pp.282-292, 2004.
14.S. S. Abdel Rehim, H. H. Hassan, and M. A. Amin, “Galvanostatic
anodization of pure Al in some aqueous acid solutions Part I:Growth
kinetics, composition and morphological structure of porous and barrier-
type anodic alumina films,” Journal of Applied Electrochemistry, vol. 32,
pp.1257-1264, 2002.
15.Y. F. Kuang, J. P. Liu, Z. H. Hou, and D. L. He, “Preparation and
analysis of films on aluminium by high voltage anodization in phosphoric
acid and sodium tungstate solution,” Journal of Applied Electrochemistry,
vol. 31, pp.1267-1271, 2001.
16.N. M. Yakovleva, L. Anicai, A. N. Yakovlev, L. Dima, E. Y. Khanina, M.
Buda, and Chupakhina, “Structrual study of anodic films formed on aluminum
in nitric acid electrolyte.” Thin Solid Films, vol. 416, pp.16-23, 2002.
17.A. Mozalev, A. Poznyak, I. Mozaleva, and A. W. Hassel, “The voltage- time
behaviour for porous anodizing of aluminium in a fluoride-containing oxalic
acid electrolyte,” Electrochemistry Communications, vol.3, pp.299-305, 2001.
18.Hsing-Hsiang Shih, and Shiang-Lin Tzou, “Study of anodic oxidation of
aluminum in mixed acid using a pulsed current,” Surface and Coatings
Technology, vol. 124, pp.278-285, 2000.
19.A. Jagminas, D. Bigelienė, I. Mikulskas, and R. Tomašiūnas, “Growth
peculiarities of aluminum anodic oxide at high voltages in diluted
phosphoric acid,” Journal of Crystal Growth, vol. 233, pp.591-598, 2001.
20.R. L. Chiu, and P. H. Chang, “The effect of anodizing temperature on
anodic oxide formed on pure Al thin films,” Thin Solid Films, vol. 260,
pp.47-53, 1995.
21.J. F. Behnke, and T. Sands, “Bimodal spatial distribution of pores in
anodically oxidized aluminum thin films,” Journal of Applied Physics, vol.
88, pp.6875-6880, 2000.
22.Jianping Zou, Lin Pu, Ximao Bao, and Duan Feng, “Branchy alumina
nanotubes,” Applied Physics Letters, vol. 80, pp.1079-1081, 2002.
23.Y. C. Sui, B. Z. Cui, L. Martinez, R. Perez, and D. J. Sellmyer, “Pore
structure, barrier layer topography and matrix alumina structure of porous
anodic alumina film,” Thin Solid Films, vol. 406, pp.64-69, 2002.
24.A. Mozalev, S. Magaino, and H. Imai, “The formation of nanoporous
membranes from anodically oxidized aluminum and their application to Li
rechargeable batteries,” Electrochemica Acta, vol. 46, pp.2825-2834, 2001.
25.Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, and X. S. Peng,
“Alumina nanowire arrays standing on a porous anodic alumina membrane,”
Nanotechnology, vol. 15, pp.189-191, 2004.
26.Hideki Masuda, Haruki Yamada, Masahiro Satoh, Hidetaka Asoh, Masashi
Nakao, and Toshiaki Tamamura, “Highly ordered nanochannel-array
architecture in anodic alumina,” Applied Physics Letters, vol. 71, pp.2270-
2772, 1997.
27.Futoshi Matsumoto, Masahiro Harada, Nobuyuki Koura, Kazuyuki Nishio, and
Hideki Masuda, “Fabrication and Electrochemical Behavior of Nanodisk
Electrode Arrays with Controlled Interval Using Ideally Ordered Porous
Alumina,” Electrochemical and Solid-State Letters, vol. 7, pp.E51-E53, 2004.
28.S. Shingubara, Y. Murakami, K. Morimoto, and T. Takahagi, “Formation of
aluminum nanodot array by combination of nanoindentation and anodic
oxidation of aluminum,” Surface Science, vol. 532-535, pp.317-323, 2003.
29.Shoso Shingubara, Yasuhiko Murakami, Hiroyuki Sakaue, and Takayuki
Takahagi, “Formation of Al Dot Hexagonal Array on Si Using Anodic
Oxidation and Selective Etching,” Jpn. J. Appl. Phys., vol. 41, pp.L340-
L343, 2002.
30.Sébastien Fournier-Bidoz, Vladimir Kitaev, Dmitri Routkevitch, Ian
Manners, and Geoffrey A. Ozin, “Highly ordered nanosphere Imprinted
Nanochannel Alumina(NINA),” Advanced Materials, vol.16, pp.2193- 2196, 2004.
31.Hideki Masuda, Hidetaka Asoh, Mitsuo Watanabe, Kazuyuki Nishio, Masashi
Nakao, and Toshiaki Tamamura, “Square and Triangular Nanohole Array
Architectures in Anodic Alumina,” Advanced Materials, vol. 3, pp.189-192,
2001.
32.Hideki Masuda, Hidetaka Asoh, Mitsuo Watanabe, Masashi Ohya, Masashi Nakao,
Atsushi Yokoo, Toshiaki Tamamura, and Kazuyuki Nishio, “Highly ordered hole-
array architecture in anodic,” Adv. Mater., vol. 13, pp.534-535, 2001.
33.C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nano-
channels on focused-ion-beam-prepatterned aluminum surfaces,” Applied
Physics Letters, vol. 78, pp.120-122, 2001.
34.N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, “High-speed focused- ion-
beam patterning for guiding the growth of anodic alumina nanochannel
arrays,” Applied Physics Letters, vol. 82, pp.1281-1283, 2003.
35.j. H. Yuan, F. Y. He, and X. H. Xia, “A Simple Method for Preparation of
Through-Hole Porous Anodic Alumina Membrane,” Chem. Mater., vol. 16,
pp.1841-1844, 2004.
36.鄭才裕, “自我組織奈米級氧化鋁模板陽極氧化機制之研究,” 暨南國際大學電機工程
學系, 碩士論文, 2003.
37.A. I. Vorobyova, V. A. Sokil, and E. A. Outkina, “SEM investigation of
pillared microstructures formed by electrochemical anodization,” Applied
Physics A, vol. 67, pp.487-492, 1998.
38.A. I. Vorobyova, and E. A. Outkina, “Study of pillar microstructure
formation with anodic oxides,” Thin Solid Films, vol. 324, pp.1-10, 1998.
39.S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354,
pp.56-58, 1991.
40.陳柏林, “奈米碳管與氧化鈦奈米點之陽極氧化鋁模板輔助成長與電子場效發射,” 國
立交通大學材料科學與工程學系, 博士論文, 2005.4.
41.P. Gu, J. H. Zhao, G. H. Li, and M. Gong, “Highly ordered carbon nanotube
arrays with open ends grown in anodic alumina nanoholes,” Journal Wuhan
University of Technology, Materials Science Edition, vol. 18, pp.7-8+24,
2003.
42.S. K. Hwang, J. H. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee,
“Fabrication of carbon nanotube emitters in an anodic aluminium oxide
nanotemplate on a Si wafer by multi-step anodization,” Nanotechnology, vol.
16, pp.850-858, 2005.
43.T. Qiu, X. L. Wu, G. S. Huang, G. G. Siu, Y. F. Mei, F. Kong, and M.
Jiang, “Individual alumina nanotubes coaxially wrapping carbon nanotubes and
nanowires,” Thin Solid Films, vol. 478, pp.56-60, 2005.
44.Y. Yang, H. Chen, Y. F. Mei, J. B. Chen, X. L. Wu, and X. Bao,
“Anodic alumina template on Au/Si substrate and preparation of CdS
nanowires,” Solid State Communications, vol. 123, pp.279-282, 2002.
45.Dmitri Routkevitch, A. A. Tager, Junji Haruyama, Diyaa Almawlawi,
Martin Moskovits, and Jimmy M. Xu, “Nonlithographic nano-wire arrays:
Fabrication, Physics, and device applications,” IEEE Transactions on
Electron Devices, vol. 43, pp.1646-1657, 1996.
46.P. K. Nahar, “Study of the performance degradation of thin film
aluminum oxide sensor at high humidity,” Sensors and Actuators, B:
Chemical, vol. 63, pp.49-54, 2000.
47.R. K. Nahar, and V. K. Khanna, “Ionic doping and inversion of the
characteristic of thin film porous Al2O3 humidity sensor,” Sensors and
Actuators, B: Chemical, vol. B46, pp.35-41, 1998.
48.G. Sberveglieri, R. Anchisini, R. Murri, C. Ercoli, and N. Pinto,
“Al2O3 sensor for low humidity content: characterization by impedance
spectroscopy,” Sensors and Actuators, B: Chemical, vol. B32, pp.1-5, 1996.
49.W. G. Yelton, K. B. Pfeifer, and A. W. Staton, “Porous Al2O3
nanogeometry sensor films: Growth and analysis,” Journal of the
Electrochemical Society, vol. 149, pp.H1-H5, 2002.
50.http://www.corning.com.tw/tc/, 2003, 04.
51.http://140.116.176.21/www/index.htm, 2005, 06.
52.林文全, 李驊登, 劉全, 昌增榮, “KrF準分子雷射製程參數對再結晶多晶矽晶
粒尺寸之影響,” 中國機械工程學會第二十屆全國學術研討會, 台灣大學, 2003.12.