簡易檢索 / 詳目顯示

研究生: 昌增榮
Chang, Zeng-Rong
論文名稱: 鋁薄膜陽極處理多孔性氧化層結構之特性研究
The characteristics of porous anodic oxide structure formed on aluminum thin film
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 82
中文關鍵詞: 太陽能電池阻障層鋁薄膜多孔氧化鋁陽極處理
外文關鍵詞: barrier, solar cell, anodizing, porous alumina, aluminum thin film
相關次數: 點閱:106下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以探討鋁薄膜陽極處理所生成之多孔氧化膜為主軸,透過SEM對多孔氧化膜表面形貌與剖面結構進行分析,並配合陽極處理過程中電壓電流對時間的關係,討論胞孔的生成機制,以及電壓大小、電解液溫度對多孔結構之影響。最後將陽極處理的胞孔孔距與準分子雷射再結晶的多晶矽尺寸作比較,找出適合的參數,以將多孔氧化鋁膜應用於新型多晶矽太陽能電池。
    陽極處理電壓在60V與80V之下,氧化膜的阻障層厚度約都在50 nm,超過80V時阻障層厚度會隨電壓上升而變厚,電壓140V時平均厚度增加至200 nm;在電壓不超過100V時氧化膜胞孔孔壁厚度約在60~70 nm左右,當電壓大於100V時孔壁厚度呈線性增加的趨勢,電壓140V時孔壁之平均厚度為206 nm;在電壓60V與140V時平均孔距分別為134 nm及329 nm,胞孔平均孔距會隨電壓上升而變大;120V-40V之降壓反應後氧化膜的胞孔孔距、孔壁厚度、阻障層厚度分別為255nm、145 nm、73 nm。
    陽極處理電壓120V的胞孔孔距與雷射照射參數450 mJ/cm2之下的晶粒尺寸相差不遠,而120V-40V之降壓處理與120V長時間處理後兩者的胞孔孔距非常相近,故可用降壓處理調整胞孔結構,以滿足在太陽能電池應用上的需求。

    The research mainly explores the porous oxide from anodic aluminum thin film: to analyze the surface morphology and section structure of the porous oxidized membrane through SEM, and to match up the voltage- current-time relationship during anodizing process to discuss the formation of the pores and the influence of voltage and electrolyte temperature on the porous structure. Eventually, we compare the anodic interpore distance with the size of poly-Si from Excimer Laser re-crystallization to find out the most suitable parameter. It is for applying the porous oxidized aluminum thin film to the new type poly-Si solar cell.
    The depth of the alumina barrier is about 50nm when using 60V and 80V of anodizing voltage. When the voltage is above 80V, the increase of voltage will result in the thicker barrier. The barrier thickness adds up to 200nm while voltage rises to 140V. The wall thickness of the pore structure is about 60~70nm under 100V, and it will increase linearly to 206nm while the voltage rises to 140V. The distances between pores are 134nm and 329nm respectively when voltages are 60V and 140V. The average distance will become farther with the mounting voltage. After 120V-40V reducing voltage process, the depth of barrier is 73nm, the wall thickness is about 145nm, the interpore distance is about 255nm.
    The interpore distance after anodizing with 120V and the size of crystals under laser parameter of 450 mJ/cm2 are similar. Comparing the interpore distance after 120V-40V reducing voltage process and 120V long-term anodizing, we can discover that they are alike. So we can utilize the former process to adjust the pore structure for the application of solar cell.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 一、前言 1 二、文獻回顧 4 2.1 陽極處理原理 4 2.2 多孔氧化膜結構 7 2.3 預成孔陽極處理 11 2.4 陽極處理氧化膜之應用 16 三、實驗規劃與方法 21 3.1 實驗規劃 21 3.2 實驗步驟 21 3.2.1 玻璃基板鍍膜 21 3.2.2 陽極處理 24 3.2.3 蝕刻擴孔 25 3.2.4 胞孔觀察與分析 26 3.3 實驗設備 27 四、結果與討論 32 4.1 時間參數之影響 32 4.1.1 電壓電流對時間之曲線 32 4.1.2 氧化膜表面形貌之變化 34 4.1.3 胞孔結構之分析 36 4.1.4 胞孔生成機制 41 4.2 電壓參數之影響 44 4.2.1 電壓對陽極處理之影響 44 4.2.2 電壓對氧化膜表面形貌之影響 46 4.2.3 電壓對胞孔結構之影響 49 4.2.4 電壓對胞孔尺寸之影響 53 4.3 溫度參數之影響 57 4.3.1 溫度對陽極處理之影響 57 4.3.2 溫度對多孔氧化膜表面形貌之影響 59 4.3.3 溫度對胞孔結構之影響 63 4.4 多孔氧化膜在新型太陽能電池之應用 65 4.4.1 胞孔阻障層之貫穿 65 4.4.2 薄膜二次陽極處理 68 4.4.3 胞孔孔距與多晶矽晶粒尺寸之對應 70 五、結論 74 六、未來研究發展方向 76 七、參考文獻 77

    1.林文全, “KrF準分子雷射再結晶非晶矽薄膜應用於太陽能電池之研究,” 國立成功大
    學機械研究所, 碩士論文, 2003.6.
    2.方季達, “太陽能電池產業發展現況,” OPTOLINK, vol. 26, pp.22-26, 2000.
    3.V. Surganov, “Planarized thin film inductors and capacitors for hybrid
    integrated circuits made of aluminum and anodic alumina,” IEEE
    Transactions on Components, Packaging and Manufacturing Technology Part B:
    Advanced Packaging, vol. 17, pp.197-200, 1994.
    4.V. Surganov, and A. Mozalev, “Planar aluminum interconnection formed by
    electrochemical anodizing technique,” Microelectronic Engineering, vol.
    37, pp. 329-334, 1997.
    5.T. W. Hickmott, “Voltage-dependent dielectric breakdown and voltage-
    controlled negative resistance in anodized Al-Al2O3-Au diodes,” Journal of
    Applied Physics, vol. 88, pp.2805-2812, 2000.
    6.T. W. Hickmott, “Interface states at the anodized Al2O3-metal interface,”
    Journal of Applied Physics, vol. 89, pp.5502-5508, 2001.
    7.O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of
    hexagonal pore arrays in anodic alumina,” Applied Physics Letters, vol.
    72, pp.1173-1175, 1998.
    8.N. M. Nahar, G. H. Mo, and A. Ignatiev, “Development of an Al2O3-Co
    selective absorber for solar collectors,” Thin Solid Films, vol. 172, pp.19- 25, 1989.
    9.Sunil Kumar Thamida, and Hsueh-Chia Chang, “Nanoscale pore formation
    dynamics during aluminum anodization,” Chaos, vol. 12, pp.240-251, 2002.
    10.Feiyue li, Lan Zhang, and Robert M. Metzger, “On the growth of highly
    ordered pores in anodizied alumiunm oxide,” Chem. Mater., vol. 10, pp.2470-
    2480, 1998.
    11.A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal
    pore arrays with a 50-420 nm interpore distance formed by self-organization
    in anodic,” Journal of Applied Physics, vol. 84, pp.6023-6026, 1998.
    12.I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, and G. Marx, “The
    study of the volume expansion of aluminum during porous oxide firmation at
    galvanostatic regime,” Applied Surface Science, vol. 222, pp.215-225, 2004.
    13.I. Vrublevsky, V. Parkoun, J. Schreckenbach, and G. Marx, “Study of
    porous oxide film growth on aluminum in oxalic acid using a re-anodizing
    technique,” Applied Surface Science, vol. 227, pp.282-292, 2004.
    14.S. S. Abdel Rehim, H. H. Hassan, and M. A. Amin, “Galvanostatic
    anodization of pure Al in some aqueous acid solutions Part I:Growth
    kinetics, composition and morphological structure of porous and barrier-
    type anodic alumina films,” Journal of Applied Electrochemistry, vol. 32,
    pp.1257-1264, 2002.
    15.Y. F. Kuang, J. P. Liu, Z. H. Hou, and D. L. He, “Preparation and
    analysis of films on aluminium by high voltage anodization in phosphoric
    acid and sodium tungstate solution,” Journal of Applied Electrochemistry,
    vol. 31, pp.1267-1271, 2001.
    16.N. M. Yakovleva, L. Anicai, A. N. Yakovlev, L. Dima, E. Y. Khanina, M.
    Buda, and Chupakhina, “Structrual study of anodic films formed on aluminum
    in nitric acid electrolyte.” Thin Solid Films, vol. 416, pp.16-23, 2002.
    17.A. Mozalev, A. Poznyak, I. Mozaleva, and A. W. Hassel, “The voltage- time
    behaviour for porous anodizing of aluminium in a fluoride-containing oxalic
    acid electrolyte,” Electrochemistry Communications, vol.3, pp.299-305, 2001.
    18.Hsing-Hsiang Shih, and Shiang-Lin Tzou, “Study of anodic oxidation of
    aluminum in mixed acid using a pulsed current,” Surface and Coatings
    Technology, vol. 124, pp.278-285, 2000.
    19.A. Jagminas, D. Bigelienė, I. Mikulskas, and R. Tomašiūnas, “Growth
    peculiarities of aluminum anodic oxide at high voltages in diluted
    phosphoric acid,” Journal of Crystal Growth, vol. 233, pp.591-598, 2001.
    20.R. L. Chiu, and P. H. Chang, “The effect of anodizing temperature on
    anodic oxide formed on pure Al thin films,” Thin Solid Films, vol. 260,
    pp.47-53, 1995.
    21.J. F. Behnke, and T. Sands, “Bimodal spatial distribution of pores in
    anodically oxidized aluminum thin films,” Journal of Applied Physics, vol.
    88, pp.6875-6880, 2000.
    22.Jianping Zou, Lin Pu, Ximao Bao, and Duan Feng, “Branchy alumina
    nanotubes,” Applied Physics Letters, vol. 80, pp.1079-1081, 2002.
    23.Y. C. Sui, B. Z. Cui, L. Martinez, R. Perez, and D. J. Sellmyer, “Pore
    structure, barrier layer topography and matrix alumina structure of porous
    anodic alumina film,” Thin Solid Films, vol. 406, pp.64-69, 2002.
    24.A. Mozalev, S. Magaino, and H. Imai, “The formation of nanoporous
    membranes from anodically oxidized aluminum and their application to Li
    rechargeable batteries,” Electrochemica Acta, vol. 46, pp.2825-2834, 2001.
    25.Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, and X. S. Peng,
    “Alumina nanowire arrays standing on a porous anodic alumina membrane,”
    Nanotechnology, vol. 15, pp.189-191, 2004.
    26.Hideki Masuda, Haruki Yamada, Masahiro Satoh, Hidetaka Asoh, Masashi
    Nakao, and Toshiaki Tamamura, “Highly ordered nanochannel-array
    architecture in anodic alumina,” Applied Physics Letters, vol. 71, pp.2270-
    2772, 1997.
    27.Futoshi Matsumoto, Masahiro Harada, Nobuyuki Koura, Kazuyuki Nishio, and
    Hideki Masuda, “Fabrication and Electrochemical Behavior of Nanodisk
    Electrode Arrays with Controlled Interval Using Ideally Ordered Porous
    Alumina,” Electrochemical and Solid-State Letters, vol. 7, pp.E51-E53, 2004.
    28.S. Shingubara, Y. Murakami, K. Morimoto, and T. Takahagi, “Formation of
    aluminum nanodot array by combination of nanoindentation and anodic
    oxidation of aluminum,” Surface Science, vol. 532-535, pp.317-323, 2003.
    29.Shoso Shingubara, Yasuhiko Murakami, Hiroyuki Sakaue, and Takayuki
    Takahagi, “Formation of Al Dot Hexagonal Array on Si Using Anodic
    Oxidation and Selective Etching,” Jpn. J. Appl. Phys., vol. 41, pp.L340-
    L343, 2002.
    30.Sébastien Fournier-Bidoz, Vladimir Kitaev, Dmitri Routkevitch, Ian
    Manners, and Geoffrey A. Ozin, “Highly ordered nanosphere Imprinted
    Nanochannel Alumina(NINA),” Advanced Materials, vol.16, pp.2193- 2196, 2004.
    31.Hideki Masuda, Hidetaka Asoh, Mitsuo Watanabe, Kazuyuki Nishio, Masashi
    Nakao, and Toshiaki Tamamura, “Square and Triangular Nanohole Array
    Architectures in Anodic Alumina,” Advanced Materials, vol. 3, pp.189-192,
    2001.
    32.Hideki Masuda, Hidetaka Asoh, Mitsuo Watanabe, Masashi Ohya, Masashi Nakao,
    Atsushi Yokoo, Toshiaki Tamamura, and Kazuyuki Nishio, “Highly ordered hole-
    array architecture in anodic,” Adv. Mater., vol. 13, pp.534-535, 2001.
    33.C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nano-
    channels on focused-ion-beam-prepatterned aluminum surfaces,” Applied
    Physics Letters, vol. 78, pp.120-122, 2001.
    34.N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, “High-speed focused- ion-
    beam patterning for guiding the growth of anodic alumina nanochannel
    arrays,” Applied Physics Letters, vol. 82, pp.1281-1283, 2003.
    35.j. H. Yuan, F. Y. He, and X. H. Xia, “A Simple Method for Preparation of
    Through-Hole Porous Anodic Alumina Membrane,” Chem. Mater., vol. 16,
    pp.1841-1844, 2004.
    36.鄭才裕, “自我組織奈米級氧化鋁模板陽極氧化機制之研究,” 暨南國際大學電機工程
    學系, 碩士論文, 2003.
    37.A. I. Vorobyova, V. A. Sokil, and E. A. Outkina, “SEM investigation of
    pillared microstructures formed by electrochemical anodization,” Applied
    Physics A, vol. 67, pp.487-492, 1998.
    38.A. I. Vorobyova, and E. A. Outkina, “Study of pillar microstructure
    formation with anodic oxides,” Thin Solid Films, vol. 324, pp.1-10, 1998.
    39.S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354,
    pp.56-58, 1991.
    40.陳柏林, “奈米碳管與氧化鈦奈米點之陽極氧化鋁模板輔助成長與電子場效發射,” 國
    立交通大學材料科學與工程學系, 博士論文, 2005.4.
    41.P. Gu, J. H. Zhao, G. H. Li, and M. Gong, “Highly ordered carbon nanotube
    arrays with open ends grown in anodic alumina nanoholes,” Journal Wuhan
    University of Technology, Materials Science Edition, vol. 18, pp.7-8+24,
    2003.
    42.S. K. Hwang, J. H. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee,
    “Fabrication of carbon nanotube emitters in an anodic aluminium oxide
    nanotemplate on a Si wafer by multi-step anodization,” Nanotechnology, vol.
    16, pp.850-858, 2005.
    43.T. Qiu, X. L. Wu, G. S. Huang, G. G. Siu, Y. F. Mei, F. Kong, and M.
    Jiang, “Individual alumina nanotubes coaxially wrapping carbon nanotubes and
    nanowires,” Thin Solid Films, vol. 478, pp.56-60, 2005.
    44.Y. Yang, H. Chen, Y. F. Mei, J. B. Chen, X. L. Wu, and X. Bao,
    “Anodic alumina template on Au/Si substrate and preparation of CdS
    nanowires,” Solid State Communications, vol. 123, pp.279-282, 2002.
    45.Dmitri Routkevitch, A. A. Tager, Junji Haruyama, Diyaa Almawlawi,
    Martin Moskovits, and Jimmy M. Xu, “Nonlithographic nano-wire arrays:
    Fabrication, Physics, and device applications,” IEEE Transactions on
    Electron Devices, vol. 43, pp.1646-1657, 1996.
    46.P. K. Nahar, “Study of the performance degradation of thin film
    aluminum oxide sensor at high humidity,” Sensors and Actuators, B:
    Chemical, vol. 63, pp.49-54, 2000.
    47.R. K. Nahar, and V. K. Khanna, “Ionic doping and inversion of the
    characteristic of thin film porous Al2O3 humidity sensor,” Sensors and
    Actuators, B: Chemical, vol. B46, pp.35-41, 1998.
    48.G. Sberveglieri, R. Anchisini, R. Murri, C. Ercoli, and N. Pinto,
    “Al2O3 sensor for low humidity content: characterization by impedance
    spectroscopy,” Sensors and Actuators, B: Chemical, vol. B32, pp.1-5, 1996.
    49.W. G. Yelton, K. B. Pfeifer, and A. W. Staton, “Porous Al2O3
    nanogeometry sensor films: Growth and analysis,” Journal of the
    Electrochemical Society, vol. 149, pp.H1-H5, 2002.
    50.http://www.corning.com.tw/tc/, 2003, 04.
    51.http://140.116.176.21/www/index.htm, 2005, 06.
    52.林文全, 李驊登, 劉全, 昌增榮, “KrF準分子雷射製程參數對再結晶多晶矽晶
    粒尺寸之影響,” 中國機械工程學會第二十屆全國學術研討會, 台灣大學, 2003.12.

    下載圖示 校內:2008-07-22公開
    校外:2008-07-22公開
    QR CODE