| 研究生: |
陳穆申 Chen, Mu-Shen |
|---|---|
| 論文名稱: |
狹長造山帶的擠壓-伸張轉換過程:以台灣東部中央山脈的地震活動為例 Processes of Compression-to-Extension in a Narrow Orogen:Seismic Deformation Before and After Chi-Chi Earthquake |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 應力反演 、震源機制 、山脈塌陷 、集集地震 |
| 外文關鍵詞: | stress inversion, focal mechanisms, mountain collapse, Chi-Chi earthquake |
| 相關次數: | 點閱:136 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
集集地震後距車籠埔斷層東方60公里出現一條N20°E走向地震帶,寬約10公里,長約80公里,其發生位置位於東部中央山脈東翼與西翼的地質分界線上,求取其震源機制主要為正斷層。我們藉由研究分析此地震帶的地震活動性與震源機制和應力場變化,以求瞭解此區域的地震活動與地體構造的關係。
研究結果顯示:集集地震前中央山脈東側水平向應力為主的逆斷層型態於集集地震後三個月內被山脈西側的正斷層型態所取代,屬於垂直應力為主的應力場,之後一年內側向壓應力再度累積,正斷層逐漸減少,一年後回復至集集地震前山脈東側之逆斷層為主的型態。此種正斷層與逆斷層的轉換應為板塊內部的壓縮應力釋放再累積所造成。
集集地震後中央山脈產生的正斷層沿著高角度斷層面而產生,反應集集地震後造成車籠埔斷層上盤後方淺部地殼應力的轉換,表現了台灣東部中央山脈快速塌陷的模式。
關鍵字:集集地震、山脈塌陷、震源機制、應力反演。
After 1999 Chi-Chi earthquake, a 10 km wide and 80 km long seismogenic belt appeared with strike N20°E, and located 60 km east away from Chelungpu fault. The seismic belt is located at the geological boundary seperating east and west Central Range. We try to analyze the seismicity by using earthquake relocatons, earthquake focal mechanisms and stress inversion.
Our result shows : (1) 3 months to one year after Chi-Chi earthquake, the main horizontal compressional stress under east flank of Central Range before Chi-Chi earthquake change to vertical principal stress axes σ1 under the boundary line between the east and the west flank of Central Range. (2) one year later the stress under Central Range return to the situation before Chi-Chi earthquake.
The compression-to-extension process demonstrates stress rotation in the shallow crust under Central Range before and after Chi-Chi earthquake, and offer a modern mountain collapse model in Taiwan orogen.
Key words: Chi-Chi earthquake, mountain collapse, focal mechanisms, stress inversion.
中文部分
1. 中央氣象局,1999,集集大地震網站報告。
2. 交通部中央氣象局地震季報,2000,第四十七卷,第一號。
3. 何春蓀,1988,臺灣地質概論/臺灣地質圖說明書,經濟部中央地質調查所,共118 頁。
4. 李元希,1994,台灣中央山脈大禹嶺地區地質構造演化,經濟部中央地質調查所彙刊, 第九號,第78-105頁。
5. 李元希,1995,由中橫剖面及其鄰近地區看台灣造山帶的應力場型態的演化,經濟部中央地質調查所彙刊,第十號,第51-89頁。
6. 李錦發、賴典章、林朝宗、李重毅、徐兆祥,1998,三義~東勢~埔里西北向地震密集帶的新期構造與運動特徵,第七屆臺灣地區地球物理研討會論文集,第451-458頁。
7. 胡錦城,1985,台灣中部大肚山-八卦山背斜之深部構造與油氣潛能,探採研究彙報,第8期,第76-91頁。
8. 倪偉峰,2003,集集地震前後車籠埔斷層下盤地區地震活動之研究,國立成功大學地球科學系碩士論文,共115頁。
9. 徐兆祥、李重毅、李錦發,1996,臺灣中部苗栗-台中-南投地區西北-東南向地震帶之地體構造意義,「臺灣第四紀」第六次研討會暨「台北盆地地下地質與工程環境綜合調查研究」成果發表會論文集,第224-228頁。
10.徐兆祥、李重毅、李錦發、張渝龍、毛爾威,1997,臺灣西北東南向平移斷層及其地體構造意義,中國地質學會八十六年年會大會手冊及論文摘要,第309-312頁。
劉進金、鄭文哲 ,1983, 臺灣各種遙測系統及其在工程地質調查的應用潛力,礦冶,27(3):120~130。
11. 顏滄波,1963,台灣大南澳片岩區中之變質。中國地質學會會刊,第六號,第72-74頁。
英文部分
1. Aki, K., and W. H. K. Lee, 1976. Determination of the three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes, 1, A homogeneous initial model, J. Geophys. Res., 81, 4381-4399.
2. Aki, and P. G. Richards, 1980. Quantitative seismology: Theory and Methods, W. H. Freeman and Company, San Francisco.
3. Angelier J., 1979. Determination of the mean principal direction of stresses for a given fault population, Tectonophys., 56, T17-T26.
4. Angelier J., 1984. Tectonic analysis of fault slip data sets, J. Geophys. Res., 89, 5835-5848.
5. Angelier J., 1995. Crustal Extension in An Active Orogen : Taiwan. 3rd Sino-French Symposium on “Active Collision in Taiwan”, Taipei, 25-32.
6. Bos, A.G., W. Spakman, and M.C.J. Nyst, 2003. Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field, J. Geophys. Res., 108(B10): 2458, doi:10.1029/2002JB002336.
7. Burchfiel, B. C. and L. H. Royden, 1985. North-south extension within the convergent Himalaya region, Geology, 13, 679-682.
8. Carena, S., J. Suppe, and Kao H., 2002. The active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography. Geology, 30 (10), 935-938.
9. Chemenda, A. I., M. Mattauer, J. Malavieille, and A. N. Bokun, 1995. A mechanism for syn-collisional rock exhumation and associated normal faulting: Result and physical modeling, Earth Planet. Sci. Lett., 132, 225-232.
10. Chemenda, A. I., M. Mattauer, J. Malavieille, and A. N. Bokun, 1996. Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks - new modeling and field data from Oman. Earth Planet. Sci. Lett., 143, 173-182.
11. Chemenda, A. I., R. -K. Yang, C. H. Hsieh, and A. L. Groholsky, 1997. Evolutionary model for the Taiwan collision based on physical modeling, Tectonophysics, 274, 253-274.
12. Chemenda, A. I., R. -K. Yang, J. F. Stephan, E. A. Konstantinovskaya, and G. M. Ivanov, 2001. New results from physical modeling of arc-continent collision in Taiwan: evolutionary model, Tectonophysics, 333, 159-178.
13. Crespi, J. M., Chan, Y. C., and Swaim, M. S., 1996. Synorogenic extension and exhumation of the Taiwan hinterland: Geology, 24, 3, 247-250.
14. Deffontaines, B., J. C. Lee, J. Angelier, H. T. Chu, J. Carvalho, B. Delcaillau, C. Y. Lu, P. M. Liew, and J. P. Rudant, 1995. Morphoneotectonic map of Taiwan:A geomorphic multisource approach, 3rd Sino-French Symposium on “Active Collision in Taiwan”, Taipei, March 1995, 77-90.
14. Ellsworth, W. L. and X. Zhonghuai, 1980. Determination of the stress tensor from focal mechanism data, abstract, Eos Trans. AGU, 61, 1117.
15. Ellsworth, W. L., 1982. A general theory for determining state of stress in the earth from fault slip measurements, Terrea Cognita, 2, 170-171.
16. Engdahl, E. R., S. Billington, and C. Kisslinger, 1989. Teleseismically record seismicity before and after the May 7, 1986, Andreanof Islands, Alaska, earthquake, J. Geophys. Res., 94, 15,481-15,498.
17. Gephart, J. W., FMSI, 1990a. A Fortran program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor, Comput. And Geosci., 16, 953-989.
18. Gephart, J. W., 1990b. Stress and the direction of slip on fault planes, Tectonics, 9, 845-858.
19. Gephart, J. W., and D. W. Forsyth, 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J. Geophys. Res., 100, 22,197-22,213.
20.Gomberg, J. S., K. M. Shedlock, and S. W. Roecker, 1990. The effect of S-wave arrival times on the accuracy of hypocenter estimation, Bull. Seiemol. Soc. Am., 80, 1605-1628.
21. Hardebeck J. L., and E. Hauksson, 2001. Stress orientations obtained from earthquake focal mechanisms: what are the appropriate uncertainty estimates? Bull. Seismol. Soc. Am., 91, 250-262.
22. Huang, B. S., 2002. Ground rotational motions of the 1999 Chi-Chi, Taiwan Earthquake as inferred from dense array observations, Geophys. Res. Lett., vol.29.
23. Kao, H., and W. P. Chen, 2000. The Chi-Chi earthquake sequence: Active, out-of-sequence thrust faulting in Taiwan, Science, 288, 2346- 2349.
24. Kao, H., and J. Angelier, 2001a. The Chichi earthquake sequence, Taiwan: results from source parameter and stress tensor inversions, Earth and Planetary Sciences, 333, 65-80.
25. Kao, H., and J. Angelier, 2001b. Stress tensor inversion for the Chi-Chi earthquake sequence and its implications on regional collision, Bull. Seismol. Soc. Am., 91(5), 1028-1040.
26. Kao, H., 2002. Seismogenic patterns of the 1999 Chi-Chi, Taiwan, earthquake sequence: Source parameters of aftershocks and tectonic implications on orogeny, submitted to J. Geophys. Res.
27. Kao, H., Y. H. Liu, W. T. Liang, and W. P. Chen, 2002. Source parameters of regional earthquakes in Taiwan (1999-2000) and data release note for the Chi-Chi earthquake sequence from BATS, submitted to TAO.
28. King, G. C. P., R. S. Stein, J. Lin, 1994. Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am., 84, 935-953.
29. Kissling E., W. L. Ellsworth, D. Eberhart-Phillip, and U. Kradolfer, 1994, Initial reference models in local earthquake tomography, J. Geophys. Res., 99, 19,635-19,646.
30. Kissling, E., Kradolfer, U., and Maurer, H., 1995. VELEST user’s guide-short introduction, Tech. Rep., Institute of Geophysics and Swiss Seismological Service, ETH Zurich.
31. Kisslinger, C., 1980. Evaluation of S to P amplitude ratios for determining focal mechanisms from regional network observations, Bull. Seismol. Soc. Am., 70(4), 999-1014.
32. Kisslinger, C., J. R. Bowman, and K. Koch, 1981. Procedures for computing focal mechanisms from regional network observations, Bull. Seismol. Soc. Am., 70, 999 – 1014.
33. Lin, C. H., 2000. Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonphysics, 324, 189-201.
34. Lin, C. H., 2002. Active continental subduction and crustal exhumation: the Taiwan orogeny, Terra Nova, 14, 281-287.
35. McKenzie, D. P., 1969. The relation between fault plane solutions and the directions of the principal stress, Bull. Seismol. Soc. Am., 59, 591-601.
36. Michael, A. J. , 1984. Determination of stress from slip data: faults and fold, J. Geophys. Res., 89, 11,517 – 11,526.
37. Michael, A. J., 1987a. Use of focal mechanisms to determine stress: a control study, J. Geophys. Res., 92, 357-368.
38. Michael, A. J., 1987b. Stress rotation during the Coalinga aftershock sequence, J. Geophys. Res., 92, 7963 – 7979.
39. Pavlis, G. L., 1986. Appraising earthquake hypocenter location errors: a complete, practical approach for single-event location, Bull. Seismol. Soc. Am., 76, 1699-1717.
40. Rau, R. J., 1992. Flexure modeling and Taiwan tectonics, Master thesis in Geology, State Univ. of New York at Binghamton.
41. Rau, R. J., 1996. 3-D tomography, focal mechanisms, and Taiwan orogeny, ph. D. Thesis, 222pp.
42. Rau, R. J., F. T. Wu, and T. C. Shin, 1996. Regional network focal mechanism determination using 3-D velocity model and SH/P amplitude ratio, Bull. Seismol. Soc. Am., 86, 1270-1283.
43. Reasenberg, P. A., and R. W. Simpson, 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255, 1687-1690.
44. Shearer, P. M., 1999. Introduction to seismology, Cambridge Univ. press, 260.
45. Snoke, J. A., J. W. Munsey, A. G. Teague, and G. A. Bollinger, 1984. A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data, Earthquke Notes, 55, 3, 15.
46. Stein, R. S., 1999. The role of stress transfer in earthquake occurrence, Nature., 402, 605-609.
47. Sue, C., F. Thouvenot, and J. Frechet, 1999. Widespread extension in the core of the western Alps revealed by earthquake analysis, J. Geophy. Res., 104, B11, 25611-25622.
48. Suppe, J., 1980a. A retro deformable cross section of north Taiwan, Proc. Geo. Soc. China, 23, 46-55.
49. Suppe, J., 1980b. Imbricated structure of western foothills belt, south centeral Taiwan, Petro. Geol. Taiwan, 17, 1-16.
50. Suppe, J, 1987. The active Taiwan mountain belt, in The Anatomy of Mountain Ranges, edited by J. P. Schaer and J. Rodgers, 277-293., Princeton Univ. Press, Princeton.
51. Teng, L. S., C. T. Lee, Y. B. Tsai, and L. Y. Hsiao, 2000. Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan, Geology, 28, 155-158.
52. Waldhauser, F., W. L. Ellsworth, 2000. A double-difference earthquake location Algorithm: method and application to the northern Hayward fault, California, Bull. Seismol. Soc. Am. 90, 1353-1368.
53. Yeh, Y. H., Barrier, E., Lin, C. H. and Angelier, J, 1991. Stress tensor analysis in the Taiwan areaf from focal mechanisms of earthquakes: Tectonophysics, 200, 267-280.
54. Zoback, M. L. 1992. First- and second-order patterns of stress in the lithosphere: The world stress map project, J. Geophys. Res., 97, 11,703-11,728.