簡易檢索 / 詳目顯示

研究生: 楊于嬋
Yang, Yu-Chan
論文名稱: MiR-449a在細胞自噬和Ras致癌基因相關腫瘤形成之角色
The role of miR-449a in autophagy and Ras oncogene related tumorigenesis
指導教授: 劉校生
Liu, Hsiao-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 75
中文關鍵詞: 細胞自噬miRNA腫瘤形成Ha-rasmiR-449a
外文關鍵詞: autophagy, miRNA, tumorigenesis, Ha-ras, miR-449a
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞自噬(Autophagy)在許多正常生理及疾病過程中扮演重要角色,包含老化、神經退化、及腫瘤生成。Ha-ras 為一種致癌基因,其可以誘發細胞自噬並誘發腫瘤發生。MicroRNAs (miRNAs)是一群非編碼的小RNAs,藉由轉譯的降解或抑制轉錄來抑制目標基因的表現。細胞自噬與miRNAs皆與腫瘤形成有關,然而目前三者之間的關係及作用機制仍不清楚。我們之前的研究發現,在NOD/SCID 小鼠中,細胞自噬缺失與野生型的小鼠胚胎纖維母細胞中(MEF)比較,若前者高量表現突變的Ha-ras致癌基因,會誘發較大的腫瘤生成。因此,細胞自噬在ras相關腫瘤生成過程中扮演抑制的角色。本篇研究探討細胞自噬是否誘導某些miRNAs表現量增加而抑制腫瘤發生。我們利用誘導或抑制細胞自噬的方式篩選,挑選出細胞自噬正向調控的miR-449a。透過pyrosequencing偵測,甲基化不會影響miR-449a的表現,因此,miR-449a在轉錄(transcription)階段可能透過其他機制來調控。In vitro實驗中証實miR-449a可抑制細胞移動與細胞群落的生長。進一步在NOD/SCID小鼠模式中証實miR-449a具有抑制腫瘤生長的能力。而由三個軟體Targetscan,miRBase和picTar預測相互比對得出,可能與腫瘤形成有關的miR-449a標的基因,透過mRNA的分析,Lef1可能是miR-449a的標的基因。因此,在細胞自噬下miR-449a會被正向調控,進而抑制腫瘤生成。透過本篇研究,miR-449a可能成為腫瘤治療上的一個標的。

    Autophagy plays an important role in pathophysiologic process including aging, neuronal degeneration, and tumorigenesis. Ha-ras, an oncogene, can induce autophagy and promote tumorigenesis. MicroRNAs (miRNAs), a group of non-coding RNAs, suppress target-mRNA expression either by transcriptional degradation or by translational inhibition. Autophagy and miRNAs are all involved in tumorigenesis, however, the relationship among them is still unclear. We previously showed that overexpression of mutant Ha-ras oncogene in autophagy deficient mouse embryo fibroblast (MEF) cells induces larger tumor formation compared with wild-type MEF cells in NOD/SCID mice, indicating that autophagy plays a suppressive role in Ras-related tumor formation. In this study, we are interested in whether autophagy inhibits tumorigenesis through up-regulation of miRNAs. Autophagy-related miRNAs was identified by autophagy inducers and inhibitors. Among them, miR-449a was significantly up-regulated under autophagic conditions. Our data showed that methylation does not affect miR-449a expression by pyrosequncing indicating other mechanism(s) is responsible for the regulation miR-449a at transcriptional level. Furthermore, cell migration and colony formation were significantly inhibited when miR-449a was overexpressed. We further demonstrated that miR-449a played a suppressive role in tumor formation under autophagic condition in NOD/SCID model. Tumorigenesis-related genes were identified by overlapping the target genes of three software including miRBase, picTar, and Targetscan, and Lef1 may be the miR-449a target based on mRNA expression. Together, autophagy regulates miR-449a expression at transcriptional level to suppress tumorigenesis. These finding suggest that miR449a may be a marker toward cancer therapy.

    中文摘要 I Abstract III 誌謝 V Abbreviations X Introduction I. Autophagy 1 II. Autophagy and tumor formation 1 III. MiRNA and tumor formation 2 IV. MiRNAs regulation 3 V. Ras oncogene 3 VI. Autophagy, miRNA and tumorigenesis 4 Materials and Methods I. Cell lines and cell culture 6 II. Autophagy induction 6 III. Lentiviral shRNA experiments 7 IV. Immunoblotting analysis 8 V. Quantitative real-time PCR (qRT-PCR) 9 VI. Polymerase chain reaction (PCR 9 VII. 5-Aza-2’-deoxycytidine (5-Aza-dc) treatment 10 VIII. Genomic DNA extraction and DNA bisulfited 10 IX. Pyro-PCR and Pyrosequencing assay for miR-449a promoter region methylation 10 X. pMIR-reporter vectors and DNA constructs 11 XI. Large amount plasmid preparation 12 XII. Luciferase reporter assay 13 XIII. Transient transfection of cells with pre-miR-449a 13 XIV. Transwell migration assay 14 XV. Colony formation 14 XVI. Mice model 14 XVII. MiRNA target gene predication 15 XVIII. Statistical analysis 15 Results I. Autophagy-related miRNAs are validated by real-time PCR 16 II. MiRNA expression in MR cells is evaluated under Ha-ras, rapamycin, or HBSS treatments 17 III. K-ras induces autophagy and miR-449a overexpression 18 IV. MiR-449a expression is regulated at transcriptional level under the condition of ras overexpression induced autophagy 19 V. Methylation does not affect miR-449a promoter activity under the conditions of induced autophagy 19 VI. Specific suppression of miR-449a on pMIR-reporter luciferase activity carrying miR-449a precursor sequence is confirmed by luciferase activity assay 20 VII. MiR-449a plays a suppressive role in tumorigenesis 21 VIII. Target genes of miR-449a are verified by mRNA expression 22 Discussion 23 References 26 Table and Figure List Table 1 The sequence of Atg5 (TRCN0000099430)-specific shRNA used in the lentiviral system 34 Table 2 The information of antibodies used in this study 35 Table 3 The primers used in this study 36 Table 4 Up- and down-regulated miRNAs in M5R and MR cell lines 40 Table 5 The expression of five miRNAs under various autophagic stimulation and inhibition 41 Table 6 The potential target genes of miR-449a 42 Table 7 The potential tumorigenesis-related targets of miR-449a 45 Figure 1 Validation of the correlation of five miRNAs with autophagy by qRT-PCR and lentiviral system 46 Figure 2 Ha-ras, rapamycin or HBSS-induced autophagy regulates miRNAs expression 48 Figure 3 K-ras induces autophagy and miR-449a overexpression 51 Figure 4 Autophagy affects miR-449a at transcriptional level demonstrated by real-time PCR 53 Figure 5 Methylation does not affect miR-449a expression under autophagic conditions 55 Figure 6 MiR-449a specifically suppresses the luciferase activity of pMIR-reporter plasmid harboring wild type miR-449a precursor binding sequence 58 Figure 7 MiR-449a inhibits cell migration and colony formation demonstrated by Transwell migration assay and soft agar analysis 60 Figure 8 MiR-449a inhibits tumorigenesis in vivo 63 Figure 9 The mRNA expression of miR-449a potential target genes 67 Appendix List Appendix 1 Ras inducible system 70 Appendix 2 Autophagy regulation 71 Appendix 3 Plasmid pMD.2G and psPAX2 for lentiviral production 72 Appendix 4 The Pyrosequencing cascade system and quantitative analysis of CpG methylation 73 Appendix 5 pMIR-reporter luciferase plasmid for pMIR-reporter construction 74 Curriculum Vitae 75

    1.Mizushima, N., Yoshimori, T. and Levine, B., Methods in mammalian autophagy research. Cell, 2010. 140(3): p. 313-26.

    2.Hua Zhu, H.W., Xiuping Liu, Biao Li, Yun Chen, Xingcong Ren, Chang-Gong Liu and Jin-Ming Yang, Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy, 2009. 5(6): p. 816-23.

    3.Yang, Y.P., Liang, Z. Q., Gu, Z. L. and Qin, Z. H., Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin, 2005. 26(12): p. 1421-34.

    4.Liu, J.-j., Lin, Mou, Yu, Jia-ying, Liu, Bo and Bao, Jin-ku, Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Letters, 2011. 300(2): p. 105-114.

    5.Yousefi, S., Perozzo, Remo, Schmid, Inès, Ziemiecki, Andrew, Schaffner, Thomas, Scapozza, Leonardo, Brunner, Thomas and Simon, Hans-Uwe, Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biology, 2006. 8(10): p. 1124-1132.

    6.Rubinsztein, S.L.a.D., Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death and Differentiation 2007. 14: p. 1247-1250.

    7.Xiao Huan Liang, S.J., Matthew Seaman, Kristy Brown, Bettina Kempkes, Hanina Hibshoosh and Beth Levine, Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999. 402: p. 672-676.

    8.Sinha, S.a.L., B., The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene, 2009. 27: p. S137-S148.

    9.Yue, Z., Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences, 2003. 100(25): p. 15077-15082.

    10.Longo, L., Platini, F., Scardino, A., Alabiso, O., Vasapollo, G. and Tessitore, L., Autophagy inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma. Mol Cancer Ther, 2008. 7(8): p. 2476-85.

    11.Inui, M., Martello, G. and Piccolo, S., MicroRNA control of signal transduction. Nat Rev Mol Cell Biol, 2010. 11(4): p. 252-63.

    12.Paranjape, T., Slack, F. J. and Weidhaas, J. B., MicroRNAs: tools for cancer diagnostics. Gut, 2009. 58(11): p. 1546-54.

    13.Johnson, S.M., Grosshans, Helge, Shingara, Jaclyn, Byrom, Mike, Jarvis, Rich, Cheng, Angie, Labourier, Emmanuel, Reinert, Kristy L., Brown, David and Slack, Frank J., RAS Is Regulated by the let-7 MicroRNA Family. Cell, 2005. 120(5): p. 635-647.

    14.Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S. and Mo, Y. Y., MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res, 2008. 18(3): p. 350-9.

    15.Breving, K.a.E.-K., Aurora, The complexities of microRNA regulation: mirandering around the rules. The International Journal of Biochemistry & Cell Biology, 2010. 42(8): p. 1316-1329.

    16.Bommer, G.T., Gerin, Isabelle, Feng, Ying, Kaczorowski, Andrew J., Kuick, Rork, Love, Robert E., Zhai, Yali, Giordano, Thomas J., Qin, Zhaohui S., Moore, Bethany B., MacDougald, Ormond A., Cho, Kathleen R. and Fearon, Eric R., p53-Mediated Activation of miRNA34 Candidate Tumor-Suppressor Genes. Current Biology, 2007. 17(15): p. 1298-1307.

    17.Toyota, M., Suzuki, H., Sasaki, Y., Maruyama, R., Imai, K., Shinomura, Y. and Tokino, T., Epigenetic Silencing of MicroRNA-34b/c and B-Cell Translocation Gene 4 Is Associated with CpG Island Methylation in Colorectal Cancer. Cancer Research, 2008. 68(11): p. 4123-4132.

    18.Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., Sultmann, H. and Lyko, F., The Human let-7a-3 Locus Contains an Epigenetically Regulated MicroRNA Gene with Oncogenic Function. Cancer Research, 2007. 67(4): p. 1419-1423.

    19.Hildebrandt, M.A.T., Gu, J., Lin, J., Ye, Y., Tan, W., Tamboli, P., Wood, C. G. and Wu, X., Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene, 2010. 29(42): p. 5724-5728.

    20.Lujambio, A., Calin, G. A.,Villanueva, A., Ropero, S., Sanchez-Cespedes, M., Blanco, D., Montuenga, L. M., Rossi, S., Nicoloso, M. S., Faller, W. J., Gallagher, W. M., Eccles, S. A., Croce, C. M. and Esteller, M., A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences, 2008. 105(36): p. 13556-13561.

    21.Abrams SI, H.P., Tsang KY and Schlom J., Mutant ras epitopes as targets for cancer vaccines. Semin Oncol, 1996. 23(1): p. 118-34.

    22.Bos, J.L., ras Oncogenes in Human CancerA Review. Cancer Research, 1989. 49: p. 4682-4689.

    23.Liu, H.S., Scrable, H., Villaret, D. B., Lieberman, M. A. and Stambrook, P. J., Control of Ha-ras-mediated mammalian cell transformation by Escherichia coli regulatory elements. Cancer Res, 1992. 52(4): p. 983-9.

    24.Amundadottir, L.T.a.L., P., Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene, 1998. 16(6): p. 737-46.

    25.Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. and Lowe, S. W., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 1997. 88(5): p. 593-602.

    26.Tanaka, N., Ishihara, M., Kitagawa, M., Harada, H., Kimura, T., Matsuyama, T., Lamphier, M. S., Aizawa, S., Mak, T. W. and Taniguchi, T., Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell, 1994. 77(6): p. 829-39.

    27.Chi, S., Kitanaka, C., Noguchi, K., Mochizuki, T., Nagashima, Y., Shirouzu, M., Fujita, H., Yoshida, M., Chen, W., Asai, A., Himeno, M., Yokoyama, S. and Kuchino, Y., Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene, 1999. 18(13): p. 2281-90.

    28.Spahn, M., Kneitz, Susanne, Scholz, Claus-Jürgen, Nico, Stenger, Rüdiger, Thomas, Ströbel, Philipp, Riedmiller, Hubertus and Kneitz, Burkhard, Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. International Journal of Cancer, 2009. 127: p. 394-403.

    29.Noonan, E.J., Place, R. F., Pookot, D., Basak, S., Whitson, J. M., Hirata, H., Giardina, C. and Dahiya, R., miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene, 2009. 28(14): p. 1714-24.

    30.Noonan, E.J., Place, R. F., Basak, S., Pookot, D. and Li, L. C., miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget, 2010. 1(5): p. 349-358.

    31.Yang, X., Feng, M., Jiang, X., Wu, Z., Li, Z., Aau, M. and Yu, Q., miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev, 2009. 23(20): p. 2388-93.

    32.Boominathan, L., The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS One, 2010. 5(5): p. e10615.

    33.Chen, N.a.K.-W., V., Role and regulation of autophagy in
    cancer. Biochim Biophys Acta, 2009. 1793(9): p. 1516-23.

    34.Mak, C.M., et al., Rapid diagnosis of Wilson disease by a 28-mutation panel: real-time amplification refractory mutation system in diagnosing acute Wilsonian liver failure. Clin Chim Acta, 2008. 398(1-2): p. 39-42.

    35.Royo, J.L., Hidalgo, Manuel and Ruiz, Agustin, Pyrosequencing protocol using a universal biotinylated primer for mutation detection and SNP genotyping. Nature Protocols, 2007. 2(7): p. 1734-1739.

    36.Biosystem, A., miRNA Expression Reporter Vector_AM5795.

    37.Yeh, H.H., Giri, R., Chang, T. Y., Chou, C. Y., Su, W. C. and Liu, H. S., Ha-ras oncogene-induced Stat3 phosphorylation enhances oncogenicity of the cell. DNA Cell Biol, 2009. 28(3): p. 131-9.

    38.Mathew, R., Karantza-Wadsworth, V. and White, E., Role of autophagy in cancer. Nat Rev Cancer, 2007. 7(12): p. 961-7.

    39.Crighton, D., et al., DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006. 126(1): p. 121-34.

    40.Eskelinen, E.L., The dual role of autophagy in cancer. Curr Opin Pharmacol, 2011. 11(4): p. 294-300.

    41.Giehl, K., Oncogenic Ras in tumour progression and metastasis. Biol Chem, 2005. 386(3): p. 193-205.

    42.Liu, W., Zabirnyk, O., Wang, H., Shiao, Y. H., Nickerson, M. L., Khalil, S., Anderson, L. M., Perantoni, A. O. and Phang, J. M., miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene, 2010. 29(35): p. 4914-24.

    43.Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouyssegur, J. and Mazure, N. M., Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol, 2009. 29(10): p. 2570-81.

    44.Michalak, E., Villunger, A., Erlacher, M. and Strasser, A., Death squads enlisted by the tumour suppressor p53. Biochem Biophys Res Commun, 2005. 331(3): p. 786-98.

    45.Marson A, L.S., Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp PA, Bartel DP, Jaenisch R and Young RA., Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 2008. 134(3): p. 521-33.

    46.Saito, Y., Liang, G., Egger, G., Friedman, J. M., Chuang, J. C., Coetzee, G. A. and Jones, P. A., Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 2006. 9(6): p. 435-43.

    47.Bou Kheir, T., Futoma-Kazmierczak, E., Jacobsen, A., Krogh, A., Bardram, L., Hother, C., Gronbaek, K., Federspiel, B., Lund, A. H. and Friis-Hansen, L., miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer, 2011. 10: p. 29.

    48.Li, Y., Wang, L., Zhang, M., Melamed, J., Liu, X., Reiter, R., Wei, J., Peng, Y., Zou, X., Pellicer, A., Garabedian, M. J., Ferrari, A. and Lee, P., LEF1 in Androgen-Independent Prostate Cancer: Regulation of Androgen Receptor Expression, Prostate Cancer Growth, and Invasion. Cancer Research, 2009. 69(8): p. 3332-3338.

    49.Thompson, A.L.E.a.C.B., Defective autophagy leads to cancer. cancer cell, 2003: p. 422-424.

    50.Wu, Z., Cho, H., Hampton, G. M. and Theodorescu, D., Cdc6 and cyclin E2 are PTEN-regulated genes associated with human prostate cancer metastasis. Neoplasia, 2009. 11(1): p. 66-76.

    51.Yamada, S., Sumrejkanchanakij, P., Amagasa, T. and Ikeda, M. A., Loss of cyclin E requirement in cell growth of an oral squamous cell carcinoma cell line implies deregulation of its downstream pathway. Int J Cancer, 2004. 111(1): p. 17-22.

    52.de Angelis, P.M., Fjell, B., Kravik, K. L., Tunheim, S. H., Reichelt, W., Beigi, M., Clausen, O. P., Galteland, E. and Stokke, T., Molecular characterizations of derivatives of HCT116 colorectal cancer cells that are resistant to the chemotherapeutic agent 5-fluorouracil. Int J Oncol, 2004. 24(5): p. 1279-88.

    53.Gentile, M., Ahnstrom, M., Schon, F. and Wingren, S., Candidate tumour suppressor genes at 11q23-q24 in breast cancer: evidence of alterations in PIG8, a gene involved in p53-induced apoptosis. Oncogene, 2001. 20(53): p. 7753-60.

    54.Mazumder ' Indra, D., Mitra, S., Singh, R. K., Dutta, S., Roy, A., Mondal, R. K., Basu, P. S., Roychoudhury, S. and Panda, C. K., Inactivation of CHEK1 and EI24 are associated with the development of invasive cervical carcinoma: Clinical and prognostic implications. Int J Cancer, 2010. 129(8): p. 1859-1871.

    55.Adesina, A.M., Nguyen, Y., Guanaratne, P., Pulliam, J., Lopez-Terrada, D., Margolin, J. and Finegold, M., FOXG1 is overexpressed in hepatoblastoma. Hum Pathol, 2007. 38(3): p. 400-9.

    56.Adesina, A.M., Nguyen, Y., Mehta, V., Takei, H., Stangeby, P., Crabtree, S., Chintagumpala, M. and Gumerlock, M. K., FOXG1 dysregulation is a frequent event in medulloblastoma. J Neurooncol, 2007. 85(2): p. 111-22.

    57.Ito, Y., Miyauchi, A., Yoshida, H., Uruno, T., Nakano, K., Takamura, Y., Miya, A., Kobayashi, K., Yokozawa, T., Matsuzuka, F., Taniguchi, N., Matsuura, N., Kuma, K. and Miyoshi, E., Expression of alpha1,6-fucosyltransferase (FUT8) in papillary carcinoma of the thyroid: its linkage to biological aggressiveness and anaplastic transformation. Cancer Lett, 2003. 200(2): p. 167-72.

    58.Kawamoto, S., Moriwaki, K., Nakagawa, T., Terao, M., Shinzaki, S., Yamane-Ohnuki, N., Satoh, M., Mehta, A. S., Block, T. M. and Miyoshi, E., Overexpression of alpha1,6-fucosyltransferase in hepatoma enhances expression of Golgi phosphoprotein 2 in a fucosylation-independent manner. Int J Oncol, 2011. 39(1): p. 203-8.

    59.Osumi, D., Takahashi, M., Miyoshi, E., Yokoe, S., Lee, S. H., Noda, K., Nakamori, S., Gu, J., Ikeda, Y., Kuroki, Y., Sengoku, K., Ishikawa, M. and Taniguchi, N., Core fucosylation of E-cadherin enhances cell-cell adhesion in human colon carcinoma WiDr cells. Cancer Sci, 2009. 100(5): p. 888-95.

    60.Adam, L., Vadlamudi, R. K., McCrea, P. and Kumar, R., Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/beta -catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. J Biol Chem, 2001. 276(30): p. 28443-50.

    61.Li, Y., Wang, L., Zhang, M., Melamed, J., Liu, X., Reiter, R., Wei, J., Peng, Y., Zou, X., Pellicer, A., Garabedian, M. J., Ferrari, A. and Lee, P., LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth, and invasion. Cancer Res, 2009. 69(8): p. 3332-8.

    62.Nguyen, D.X., Chiang, A. C., Zhang, X. H., Kim, J. Y., Kris, M. G., Ladanyi, M., Gerald, W. L. and Massague, J., WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 2009. 138(1): p. 51-62.

    63.Zhang, J.S., Li, D. M., He, N., Liu, Y. H., Wang, C. H., Jiang, S. Q., Chen, B. Q. and Liu, J. R., A paraptosis-like cell death induced by delta-tocotrienol in human colon carcinoma SW620 cells is associated with the suppression of the Wnt signaling pathway. Toxicology, 2011. 285(1-2): p. 8-17.

    64.Yue, W., Wang, J. P., Li, Y., Fan, P., Liu, G., Zhang, N., Conaway, M., Wang, H., Korach, K. S., Bocchinfuso, W. and Santen, R., Effects of estrogen on breast cancer development: Role of estrogen receptor independent mechanisms. Int J Cancer, 2010. 127(8): p. 1748-57.

    65.Wei, W., Chua, M. S., Grepper, S. and So, S. K., Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells. Mol Cancer, 2009. 8: p. 76.

    無法下載圖示 校內:2013-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE