| 研究生: |
鄒淵翔 Zou, Yuan-Hsiang |
|---|---|
| 論文名稱: |
高倍率聚光型太陽能模組之熱傳及轉換效率分析與聚光鏡設計 Thermal and Conversion Efficiency Analysis and a Novel Concentrator Design for High Concentration Photovoltaic Module |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 聚光型太陽能 、聚光鏡 、光學 、均勻照度 、轉換效率 |
| 外文關鍵詞: | HCPV, concentrator, optical, uniform irradiance, conversion efficiency |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高倍率的聚光型太陽能模組設計雖然解決了三五族多接面晶片成本昂貴的問題,卻因為使用高倍率的透鏡而造成晶片發熱及表面照度不均勻的問題,進而造成晶片效率降低。本研究利用適當簡化的熱傳導及光電轉換效率理論模型,以解析的方法探討晶片表面不均勻照度對其轉換效率的影響,並且提出一個可以提供晶片表面均勻照度的聚光鏡設計,以解決高倍率聚光型太陽能模組目前所面臨的技術瓶頸。
有關前述理論模型,我們將模組背板視作一無窮大薄板,而太陽能晶片則為其中心位置上之一圓形區域,且晶片表面照度以軸對稱形式分布。我們再假設晶片上局部之光電轉換效率隨該點溫度上升而線性遞減(或晶片局部光電轉換效率之 “溫度係數” 為常數),便可以解析方法推得此晶片與背板共構模組在穩態時之溫度分布,進而計算晶片之整體 (亦即空間平均)光電轉換效率。接著將晶片表面照度設為內外兩區分布,並且採用可在實際系統上實現之參數設定,我們有系統地檢視個別參數對於光電轉換效率的影響。結果顯示,晶片表面照度不均會導致其效率降低,但若能提升模組之散熱能力,同時選用溫度係數較低之太陽能晶片,則仍可將其轉換效率提升至更接近其理想 (最大) 值。
而為了得到均勻的晶片表面照度,我們也提出一項創新的聚光鏡設計。該設計以雙拋共焦反射鏡為主體,搭配適當焦距的Fresnel透鏡,入射的陽光經過二次光學後,可在晶片上得到相當均勻的照度分佈。因此該設計可有效降低因照度不均勻所引起的晶片效率損失,並且可以降低晶片的最高溫度,使晶片效率盡可能接近理論值。為了評估聚光鏡的各項特性,本文以數值模擬的方式探討局部最高聚光倍率、光學效率以及可接受角。此外,本文也針對幾何聚光倍率與寬高比深入討論,以決定如何透過調整兩者的設計值來求得較均勻的晶片照度,使晶片發揮較高的轉換效率。
為了確認雙拋反射式設計可有效降低晶片表面照度不均勻度,我們委託聚陽光能股份有限公司開發聚光倍率1040X之聚光型太陽能模組,並建立一套符合國際太陽能量測規範建議的測試平台。透過長時間的發電效能追蹤監控,當直射日照度高於800 W/m2時,其轉換效率常高於30%,由此足以證明該光學設計可有效解決晶片表面照度不均勻之問題。再搭配本文所建立之解析方法,預期本文之研究成果將可協助高倍率聚光型太陽能光電系統工程師優化其模組設計,應對其頗有助益。
Here we investigate how inevitable heating of a solar cell, resulting from its non-uniformly distributed surface irradiance, affects the conversion efficiency of a high-concentration photovoltaic (HCPV) module utilizing the solar cell. A 2-D model of heat transfer is considered to model the backsheet and solar cell which is subjected to axisymmetrically distributed surface irradiance. Assuming a constant temperature coefficient of the conversion efficiency, we can calculate the steady-state temperature distribution on the module analytically. The conversion efficiency of solar cell then is evaluated. Through a systematic and realistic parameter study for a two zone cell-surface irradiance distribution, it is demonstrated that cell-surface irradiance non-uniformity tends to decrease the conversion efficiency. And this emphasizes the importance of having a highly uniformly distributed irradiance on the cell surface.
In order to achieve uniform cell-surface irradiance, we then analyze the optical performance of a novel concentrator design. Specifically, in that design a pair of confocal parabolic reflectors and a Fresnel lens with matching focal length are employed to achieve high irradiance uniformity on solar cell. To evaluate the characteristics of this concentrator design, peak concentration ratio (PCR), optical efficiency and acceptance angle are calculated numerically. An optimized set of design parameters thus is identified. A confocal HCPV module then is constructed and tested, both in the lab and in the field. The results of testing clearly demonstrate the effectiveness of the concentrator design, and the high performance of the HCPV module.
[1]Sonneveld, P. J., Swinkels, G. L. A. M., van Tuijl, B. A. J., Janssen, H. J. J., Campen, J., and Bot, G. P. A., “Performance of a Concentrated Photovoltaic Energy System with Static Linear Fresnel Lenses, ”Solar Energy, Vol. 85, pp. 432–442 (2011).
[2]Pérez-Higueras, P., Muñoz, E., Almonacid, G., and Vidal, P. G., “High Concentration PhotoVoltaics Efficiencies: Present Status and Forcast, ”Renewable & Sustainable Energy Reviews, Vol. 15, pp. 1810–1815 (2011).
[3]IEEE 1513, “IEEE Recommended Practice for Qualification of Concentrator Photovoltaic (PV) Receiver Sections and Modules,” IEEE-SASB, Piscataway, NJ, USA (2001).
[4]IEC 62108, “Concentrator Photovoltaic (CPV) Modules and Assemblies—Design Qualification and Type Approval,” Ed. 1.0. IEC, Geneva, Switzerland (2007).
[5]Castro, M., Gonza’lez, O., 2012. From cell to module in a CPV system: design for mass production of a 31.5% efficiency module. In: Proceedings of the 8th International Conference on Concentrating Photovoltaic Systems (CPV-8), April 16–18, 2012. Toledo, Castilla–La Mancha, Spain, pp. 213–216.
[6]Araki, K., Zamora, P., Nagai, H., Benítez, P., Hobo, K., Miñano, J. C., Futo, M., Sala, G., Tamura, K., and Kumagai, I., “Design and Development of 35% Efficient and 1000X CPV Module with Sufficient Optical Alignment Tolerance”, Proc. Of the 38th IEEE Photovoltaic Specialists Conference, June 3–8, 2012, Austin, TX, USA, pp. 001815–001819 (2012).
[7]Dimroth, F., Philipps, S. P., Peharz, G., Welser, E., Kellenbenz, R., Roesener, T., Klinger, V., Oliva, E., Steiner, M., Meusel, M., Guter, W., and Bett, A. W., “Promises of Advanced Multi-Junction Solar Cells for the Use in CPV Systems”, Proc. of the 35th IEEE Photovoltaic Specialists Conference, June 20–25, 2010, Honolulu, HI, USA, pp. 001231–001236 (2010).
[8]Fernández, E.F., Siefer, G., Almonacid, F., García Loureiro, A.J., Pérez-Higueras, P., “A Two Subcell Equivalent Solar Cell Model for III-V Triple Junction Solar Cells under Spectrum and Temperature Variations”, Solar Energy, Vol. 92, pp. 221–229 (2013).
[9]Helmers, H., Schachtner, M., Bett, A. W., “Influence of Temperature and Irradiance on Triple-Junction Solar Subcells”, Solar Energy Materials & Solar Cells, Vol. 116, pp. 144–152 (2013).
[10]Peharz, G., Ferrer Rodríguez, J. P., Siefer, G., Bett, A. W., “Investigations on the Temperature Dependence of CPV Modules Equipped with Triple-Junction Solar Cells”, Progress in Photovoltaics: Research and Applications, Vol. 19, pp. 54–60 (2011).
[11]Fu, L., Leutz, R., Annen, H. P., “Secondary Optics for Fresnel Lens Solar Concentrators”, Proc. Of SPIE, Vol.7785, pp. 778509-1–778509-6 (2010).
[12]Zamora, P., Benitez, P., Li, Y., Miñano, J. C., Mendes-Lopes, J., Araki, K., “The Dome-Shaped Fresnel-Köhler Concentrator”, Proc. of the 8th International Conference on Concentrating Photovoltaic Systems (CPV-8), April 16–18, 2012, Toledo, Castilla–La Mancha, Spain, pp. 69–72 (2012).
[13]Mendes-Lopes, J., Benítez, P., Zamora, P., Miñano, J. C., “9-fold Fresnel Köhler Concentrator for Increased Uniform Irradiance on High Concentrations”, Proc. of the 9th International Conference on Concentrating Photovoltaic Systems (CPV-9), April 15–17, 2013, Miyazaki, Japan, pp. 75–78 (2013).
[14]Zou, Y.-H., and Yang, T.-S., “Optical Performance Analysis of a HCPV Solar Concentrator Yielding Highly Uniform Cell Irradiance”, Solar Energy, Vol. 107, pp. 1–14 (2014).
[15]Huang, B.-J., and Sun, F.-S., “System Analysis of 1-Axis Three-Position Tracking Solar PV,” J. Chinese Society of Mechanical Engineers, Vol. 28, No. 3, pp. 307–313 (2007).
[16]Chu, C.-C., and Chen, C.-L., “A Variable Step Maximum Power Point Tracking for Photovoltaic Power System,” J. Chinese Society of Mechanical Engineers, Vol. 29, No. 3, pp. 225–231 (2008).
[17]Bagienski, W., Kinsey, G. S., Liu, M., Nayak, A., Garboushian, V., “Open Circuit Voltage Temperature Coefficients vs. Concentration: Theory, Indoor Measurements, and Outdoor Measurements”, Proc. of the 8th International Conference on Concentrating Photovoltaic Systems (CPV-8), April 16–18, 2012, Toledo, Castilla–La Mancha, Spain, pp. 148–151 (2012).
[18]Espinet-Gonza’lez, P., Mohedano, R., Garcı’a, I., Zamora, P., Rey-Stolle, I., Benitez, P., Algora, C., Cvetkovic, A., Herna’ndez, M., Chaves, J., Min˜ano, J.C., Li, Y., 2012. Triple-junction solar cell performance under Fresnel-based concentrators taking into account chromatic aberration and off-axis operation. In: Proceedings of the 8th International Conference on Concentrating Photovoltaic Systems (CPV-8), April 16–18, 2012. Toledo, Castilla–La Mancha, Spain, pp. 81–84.
[19]Alvarez, J.L., Dı’az, V., Alonso, J., 2005. Optics design key points for high gain photovoltaic solar energy concentrators. In: Proceedings of SPIE 5962, pp. 596210-1–596210-9.
[20]Bett, A.W., Baur, C., Dimroth, F., Lange, G., Meusel, M., van Riesen, S., Siefer, G., Andreev, V.M., Rumyantsev, V.D., Sadchikov, N.A., 2003. FLATCONe-modules: Technology and characterisation. In: Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, May 11–18, 2003. Osaka, Japan, pp. 634–637.
[21]Hernandez, M., Cvetkovic’, A., Benı’tez, P., Min˜ano, J.C., 2008. Highperformance Kohler concentrators with uniform irradiance on solar cell. In: Proceedings of SPIE 7059, pp. 705908-1–705908-9.
[22]Terao, A., Mulligan, W.P., Daroczi, S.G., Pujol, O ` .C., Verlinden, P.J., Swanson, R.M., 2000. A mirror-less design for micro-concentrator modules. In: Proceedings of the 28th IEEE Photovoltaic Specialists Conference, September 15–22, 2000. Anchorage, AK, USA, pp. 1416–1419.
[23]Matsuzaki, I., Abe, K., Fujita, K., 2013. PMMA lens with high efficiency and reliability. In: Proceedings of the 9th International Conference on Concentrating Photovoltaic Systems (CPV-9), April 15–17, 2013. Miyazaki, Japan, pp. 71–74.
[24]Brinksmeier, E., Gessenharter, A., Pe’rez, D., Blen, J., Benı’tez, P., Diaz, V., Alonso, J., 2004. Design and manufacture of aspheric lenses for novel high efficient photovoltaic concentrator modules. In: Proceedings of the ASPE 19th Annual Meeting, October 24–29, 2004. Orlando, FL, USA, pp. 582–585.
[25]Annen, H.P., Fu, L., Leutz, R., Gonza’lez, L., Mbakop, J., 2011. Direct comparison of polymethylmetacrylate (PMMA) and silicone-on-glass (SOG) for Fresnel lenses in concentrating photovoltaics (CPV). In: Proceedings of SPIE 8112, pp. 811204-1–811204-7.
[26]Abramowitz, M., and Stegun, I. A., Eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th printing, Dover Publications, Inc., New York (1972).
[27]Akisawa, A., Hiramatsu, M., Ozaki, K., 2012. Design of dome-shaped non-imaging Fresnel lenses taking chromatic aberration into account. Solar Energy 86, 877–885.
[28]http://www.apic.com.tw/
[29]http://www.neo-optic.com.tw/
[30]Browne, B., Lacey, J., Tibbits, T., Bacchin, G., Wu, T.-C., Liu, J.Q., Chen, X., Rees, V., Tsai, J., Werthen, J.-G., 2013. Triple-junction quantum-well solar cells in commercial production. In: Proceedings of the 9th International Conference on Concentrating Photovoltaic Systems (CPV-9), April 15–17, 2013. Miyazaki, Japan, pp. 3–5.
[31]Fu, L., Leutz, R., Annen, H.P., 2011. Evaluation and comparison of different designs and materials for Fresnel lens based solar concentrators. In: Proceedings of SPIE 8124, pp. 81240E-1–81240E-6.
[32]Ota, Y., Nishiota, K., 2012. Three-dimensional simulating of concentrator photovoltaic modules using ray trace and equivalent circuit simulators. Solar Energy 86, 476–481.
[33]Chen, Y.T., Ho, T.H., 2013. Design method of non-imaging secondary (NIS) for CPV usage. Solar Energy 93, 32–42.
[34]Gombert, A., Rubio, F., 2013. The importance of manufacturing processes and their control for the reliability of CPV systems. In: Proceedings of the 9th International Conference on Concentrating Photovoltaic Systems (CPV-9), April 15–17, 2013. Miyazaki, Japan, pp. 279–283.
[35]Jaus, J., Peharz, G., Gombert, A., Rodriguez, J.P.F., Dimroth, F., Eltermann, F., Wolf, O., Passig, M., Siefer, G., Hakenjos, A., Riesen, S.v., Bett, A.W., 2009. Development of FLATCON_ modules using secondary optics. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference, June 7–12, 2009. Philadelphia, PA, USA, pp. 001931–001936.
[36]Rumyantsev, V.D., Ashcheulov, Yu.V., Davidyuk, N.Yu., Ionova, E.A., Pokrovskiy, P.V., Sadchikov, N.A., Andreev, V.M., 2010. CPV modules based on lens panels. Advan. Sci. Technol. 75, 211–218.
[37]Wenham, S.R., Green, M.A., Watt, M.E., Corkish, R. Applied Photovoltaics, 2nd ed., pp. 44-47, Earthscan, London (2007).
[38] http://www1.eere.energy.gov/solar/pdfs/pvmrw12_poster_cpv__surendran.pdf
[39]Bett, A.W., Jaus, J., Peharz, G., Siefer, G., Hakenjos, A., Heile, I., Lerchenmuller, H., Wullner, J., 2008. Outdoor evaluation of FLATCON modules and systems. In: Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, May 12–16, 2008. San Diego, CA, USA, pp. 1–6.
[40]Sasaki, K., Agui, T., Nakaido, K., Takahashi, N., Onitsuka, R., Takamoto, T., 2013. Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells. In: Proceedings of the 9th International Conference on Concentrating Photovoltaic Systems (CPV-9), April 15–17, 2013. Miyazaki, Japan, pp. 22–25.