| 研究生: |
高梓熙 Gao, Zi-Xi |
|---|---|
| 論文名稱: |
以聚苯乙烯球遮罩與氧電漿蝕刻製備圖案化碳量子點薄膜的研究 Preparation of Patterned Carbon Quantum Dot Films via Polystyrene Sphere Templates and Oxygen Plasma Etching |
| 指導教授: |
陳嘉勻
Chen, Chia-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 碳量子點CQDs 、聚苯乙烯微球 、氧電漿 、圖案化蝕刻 、FDTD光學模擬 |
| 外文關鍵詞: | Carbon quantum dots, polystyrene microspheres, oxygen plasma, patterned etching, FDTD optical simulation |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今AI深度學習技術的進步推動了物聯網智慧家居、6G通訊與低碳技術的深度融合,此趨勢已成為當代科技發展的核心驅動力。本研究中以新型半導體材料碳量子點薄膜進行製程上的改良,利用聚苯乙烯微球和氧電漿蝕刻在奈米尺度上進行圖案化製程,最終實現了具有三維幾何形貌的碳量子點單體陣列,並且通過調整蝕刻參數能在一定程度上控制單體的形貌以及尺寸大小藉由微結構和FDTD光學模擬軟體的輔助下來對其光學特性在一定程度上實現精準調控,對於光學上具有窄帶吸收和發射的CQDs具有重要意義。
本研究提供一種新型的對碳量子點物理調控的製程方法,在氧電漿蝕刻下通過聚苯乙烯微球作爲遮罩對合成的CQDs薄膜進行選擇性蝕刻形成一層具有幾何形貌的六方陣列圖案化結構薄膜層。並可藉由選用直徑為300 nm 和400 nm的聚苯乙烯微球遮罩以及30 s,60 s,65 s,75 s,80 s,100 s不同的蝕刻時間來調控微結構,通過Raman,XPS和FTIR分析圖案化蝕刻前後的變化,發現其奈米級深度表面含氧官能基在強氧化性的氧電漿會被進一步氧化,而碳碳雙鍵也會部分轉化為碳碳單鍵,而在整體碳量子點結構變化並不明顯。此結果在一定程度上説明圖案化製程能夠物理調控形貌的同時,對化學性質的影響不顯著。在300 nm PS球遮罩組40 s-100 s和400 nm PS球遮罩組65 s-100 s的時間區域內其圖案化單體呈現有一定規律變化的錐狀結構,在紫外綫/可見光分光光譜儀的量測反射率的結果出現了連續化的偏移現象並與FDTD模擬結果相擬合。
This study developed a novel nanoscale patterning process for carbon quantum dot (CQD) films using polystyrene (PS) microsphere masks and oxygen plasma etching. This technique creates a three-dimensional hexagonal array of CQD monomers. Monolith morphology and size are controlled by selecting PS microsphere diameters (300 nm or 400 nm) and varying oxygen plasma etching times (30 s to 100 s).Analysis via Raman spectroscopy, XPS, and FTIR revealed that etching under strong oxidizing plasma increases surface oxygen functional groups at nanoscale depths and partially converts carbon-carbon double bonds to single bonds. Crucially, the core structure of the CQDs remains largely unaltered, indicating the process primarily enables physical morphology regulation with minimal impact on intrinsic chemical properties. Specifically, conical monomer structures emerged with regular changes in the 300 nm PS group etched from 40 s to 100 s and the 400 nm PS group etched from 65 s to 100 s. UV/Vis spectrophotometry measurements demonstrated a continuous shift in reflectance corresponding to these structural changes. This shift was consistent with optical simulations performed using FDTD software, confirming the ability to precisely tune the optical properties of the patterned CQD arrays. This physical regulation is particularly significant for applications requiring narrowband absorption and emission from CQD materials.
1. Kwon,W., et al. ,Carbon quantum dot-based field-effect transistors and their ligand length-dependent carrier mobility. ACS applied materials & interfaces, 2013. 5(3):p.822-827.
2. Roy, P., et al. ,Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Materials Today, 2015.18(8): p.447-458.
3. Liu, Juan, et al. , Carbon nanodot surface modifications initiate highly efficient, stable catalysts for both oxygen evolution and reduction reactions.Advanced Energy Materials , 2016.6(9) : p. 1502039.
4. Liu, Fei, et al. ,Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence.Advanced Materials (Deerfield Beach, Fla.) , 2013.25(27): p.3657-3662.
5. GAO, Xiaohui, et al. ,Carbon quantum dot-based nanoprobes for metal ion detection. Journal of Materials Chemistry C, 2016. 4(29) : p. 6927-6945.
6. SONG, Yubin, et al. , Investigation into the fluorescence quenching behaviors and applications of carbon dots. nanoscale, 2014.6(29): p. 4676-4682.
7. ZHANG, Zhijie, et al. ,Progress of carbon quantum dots in photocatalysis applications. Particle & Particle Systems Characterization, 2016. 33(8): p.457-472.
8. EDA, Goki, et al. , Blue photoluminescence from chemically derived graphene oxide. Advanced materials (Deerfield Beach, Fla.), 2010. 22(4): p.505-509.
9. PAN, Dengyu, et al. ,Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots. Advanced materials, 2010.22(6): p. 734-738
10. KUMAR, Pawan, et al. , A review on advancements in carbon quantum dots and their application in photovoltaics. RSC advances, 2022.12(8): p. 4714-4759.
11. DING, Hui, et al. ,Solvent‐controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small, 2018. 14(22): p.1800612.
12. XIA, Chunlei, et al. , Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Advanced Science, 2019. 6(23):p. 1901316.
13. LIU, Junjun, et al. , Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Advanced materials, 2020. 32(17): 1906641.
14. MANSURIYA, Bhargav D. , ALTINTAS, Zeynep. , Carbon Dots: Classification, properties, synthesis, characterization, and applications in health care—An updated review (2018–2021). Nanomaterials, 2021.11(10): p.2525.
15. LI, Wei, et al. , Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew. Chem. Int. Ed, 2013.52(31): p.8151-8155.
16. ÐORĐEVIĆ, Luka, et al. , A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnology, 2022.17(3): p.112-130.
17. XU, Xiaoyou, et al. , Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 2004.126(31): p.12736-12737.
18. SUN, Ya-Ping, et al. , Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 2006.128(24): p.7756-7757.
19. BOURLINOS, Athanasios B., et al. ,Surface functionalized carbogenic quantum dots. small, 2008. 4(4): p.455-458
20. LI, Haitao, et al. ,Water‐soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie International Edition, 2010.49(26): p.4430-4434.
21. YUAN, FangLong, et al. ,Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature communications, 2018. 9(1): p.42249.
22. WANG, Xiao, et al. ,A bright and stable violet carbon dot light‐emitting diode. Advanced Optical Materials, 2020. 8(15): p.42000239.
23. SHI, Yuxin, et al. , Onion-like multicolor thermally activated delayed fluorescent carbon quantum dots for efficient electroluminescent light-emitting diodes. Nature Communications, 2024. 15(1): p.3043.
24. RASAL, Akash S., et al. , Carbon quantum dots: Classification-structure-property-application relationship for biomedical and environment remediation. Coordination Chemistry Reviews, 2025. 533: p. 216510.
25. Gu, W., et al ., Recent Progress in the Applications of Langmuir–Blodgett Film Technology. Nanomaterials,2024.14(12),: p. 1039.
26. Ye, X., Huang, et al., High power laser antireflection subwavelength grating on fused silica by colloidal lithography. Journal of Physics D: Applied Physics, 2016. 49(26) : p.265104.
27. BERENGER, Jean-Pierre. A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics, 1994.114(2): p.185-200.
28. Ai, B., & Zhao, Y. , Glancing angle deposition meets colloidal lithography: A new evolution in the design of nanostructures. Nanophotonics, 2018.8(1) : p.265104.
29. Wang, Y., Zhang, M., Lai, Y., & Chi, L. , Advanced colloidal lithography: From patterning to applications. Nano Today, 2018.22 : p. 36-61.
30. Kern, W. , Cleaning solution based on hydrogen peroxide for use in silicon semiconductor technology. RCA review, 1970.31(2) : p. 187-206.
31. Hsiao, P. H., Lai, Y. C., & Chen, C. Y. , Dual-sized carbon quantum dots enabling outstanding silicon-based photodetectors. Applied Surface Science, 2021.542: p.148705.
32. Ming, L. I. U., & Shaohua, C. H. E. N.. Research progress of biomimetic design and preparation of functional surfaces for droplet transport. 力學進展, 2024.54: p. 1-41.
33. Lee, Y. C., Wu, H. K. et al., The synthesis and assembly mechanism of micro/nano-sized polystyrene spheres and their application in subwavelength structures. Micromachines, 2024.15(7) : p. 841.
34. Huang, A. Y., & Berg, J. C. Aggregate restructuring by polymer solvency effects. Journal of colloid and interface science, 2004. 279(2) : p.440-446.
35. Hou, S., Guo, et al. ,Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles. ACS applied materials & interfaces, 2017.9(22) : p.18417-18422.
36. Yanhong, L., Dongxu, Z.et al. ,Progress in carbon dots from the perspective of quantum dots. Acta Chimica Sinica,2020. 78(12) : p.1349-1365.
37. Hsiao, P. H., Gao, et al. , Electric and optoelectronic balances of silicon photodetectors coupled with colloid carbon nanodots. Materials Letters, 2023.336 : p.133857.
38. Bao, L., et al. ,Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Advanced materials, 2011. 23(48) : p.5801-5806.
39. TANG, Libin, et al. , Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS nano, 2012. 6 : p.5102-5110.
40. DAGER, Akansha, et al. , Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Scientific reports, 2019. 9(1) : p.14004.
41. Hui, L. S., Whiteway, E. et al. ,Synergistic oxidation of CVD graphene on Cu by oxygen plasma etching. Carbon, 2017. 125 : p. 500-508.
42. Kováčová, M., Bodík, M. et al., Increasing the effectivity of the antimicrobial surface of carbon quantum dots-based nanocomposite by atmospheric pressure plasma. Clinical Plasma Medicine, 2020.19 : p. 100111.
43. Ding, T., Wang, F. et al., Oxygen plasma etching-induced crystalline lattice transformation of colloidal photonic crystals. Journal of the American Chemical Society, 2010. 132(49) : p. 17340-17342.
44. Chen, S., Hai, X. et al., In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Analytical chemistry, 2014.86(13) : p. 6689-6694.
45. Wang, Y., Zhang, M. et al., Advanced colloidal lithography: From patterning to applications. Nano Today, 2018.22: p.36-61.
46. Shinde, A., Shinde, P. et al., Metallic micro-ring device for highly efficient large cargo delivery in mammalian cells using infrared light pulses. Lab on a Chip, 2023. 23(9) : p. 2175-2192.
47. Ai, B., Yu et al., Responsive monochromatic color display based on nanovolcano arrays. Advanced Optical Materials, 2013.1(10) : p.724-731.
48. Tan, B. Y., et al. ,Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles. The Journal of Physical Chemistry B, 2004 .108(48) : p. 18575-18579.
49. McCarty, L. S., Winkleman et al. , Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH-, 2007.46(1-2) : p. 206.
50. Schmelz, D., Jia, G. et al., Antireflection Structures for VIS and NIR on Arbitrarily Shaped Fused Silica Substrates with Colloidal Polystyrene Nanosphere Lithography. Micromachines, 2023.14(6) : p. 1204.
51. Tan, B. Y., Sow, C. H. ,et al. , Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles. The Journal of Physical Chemistry B, .2004. 108(48) : p. 18575-18579.
52. Yan, F., Meng, et al., Revolutionary carbon quantum dots and their applications: A theoretical computations perspective. Microchemical Journal, 2025.: p. 113392.
53. Lalanne, P., & Morris et al.,, Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology, 1997.8(2) : p. 53.
校內:2030-07-20公開