| 研究生: |
周文誠 Chou, Wen-cheng |
|---|---|
| 論文名稱: |
多孔性介質於垂直平板之薄膜蒸發及於底部加熱之封閉空間自然對流研究 The Study of Porous Medium in a Vertical Liquid Film Evaporation and the Natural Convection in an Enclosure Heated from Below |
| 指導教授: |
張錦裕
Jang, Jiin-yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 薄膜蒸發 、非達西效應 、封閉空間 |
| 外文關鍵詞: | liquid film evaporation, enclosure, non-Darcy effects |
| 相關次數: | 點閱:76 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文第一部分以理論分析多孔性介質中的液態薄膜蒸發問題,考慮液體沿著置於多孔性介質中的垂直等溫加熱板從上方流下,空氣為與淋水同方向的強制對流流場。空氣側及水膜側流場均採用二維層流邊界層模式,多孔性流場考慮包含對流效應、慣性效應及邊界效應的非達西模式(non-Darcy model)。內文清楚闡述兩流體在液體與空氣介面的溫度及濕度變化,及沿著壁面的局部熱傳、質傳分佈,進而探討空氣流速(Rea)、進口淋水量(Rel)、環境相對濕度()及顆粒直徑(dp)的影響。數值結果顯示潛熱熱傳是多孔性介質中的薄膜蒸發問題主要的熱傳機制。空氣進口流速愈高可提高液體與空氣介面的溫度和濕度梯度,進口淋水量小、顆粒直徑大及環境相對濕度低則可有效提高總熱傳量和總蒸發量。
本論文第二部份利用CFDRC計算流體力學軟體分析在其中置入一厚度具可傳導性水平隔板與填充部份多孔性材料的封閉空間,探討上下壁面不同溫差、不同隔板熱傳導係數 與放置位置、長寬比例對熱傳的影響。研究結果顯示渦漩數的多寡在一般流體中是熱傳效果的指標之ㄧ,渦漩數愈多代表對流程度愈強。此外,多孔性介質厚度愈大、長寬比例愈大,熱傳能力愈強。而隔板的熱傳導係數 愈大會顯著提升整體熱傳效應。
The first part of the present study is to analyze theoretically the non-Darcian effects and inlet conditions on the forced convection flow with liquid film evaporation in porous medium. The physical scheme considers a liquid-air streams combined system; the liquid film falls down along the plate and is exposed to a co-current forced moist air stream. The axial-momentum, energy and concentration equations for the air and water flows are developed based on the steady 2-D laminar boundary layer model. The non-Darcian convective, boundary and inertia effects are considered to describe the momentum characteristics of porous medium. The paper clearly describes the temperature and mass concentration variations at the liquid-air interface and provides the heat and mass transfer distributions along the heated plate. Furthermore, the effects of inlet air Reynolds number Rea, inlet liquid Reynolds number Rel, porous material diameter dp, and ambient relative humidity on the heat transfer and evaporating rate are evaluated. The numerical results show that the latent heat transfer plays a dominant role on heat transfer. In addition, higher Rea and dp, lower Rel and enhance the total heat transfer rate and total evaporating rate.
The other part of the present study is to investigate the phenomenon of natural convection in an enclosure heated from below, fitted with a completely horizontal conductive partition. The upper and lower regions are separately filled with one fluid and one porous layer. The numerical method is based on the SIMPLEC method and solved by the commercial software CFDRC. Parametric studies concerning the effects of the location of partition (HR), aspect ratio (L/H), Rayleigh number (Ra), and conductivity ratio of the partition (kw/keff) on the fluid flow and temperature fields in the enclosure are carried out. Numerical results indicate that number of convective cells is the criterion of heat transfer rate in the enclosure. The more convective cells, the higher the heat transfer rate. In addition, the cases of larger HR and L/H, and higher kw/keff possess higher heat transfer rate.
[1] Cheng P., “Similarity solutions for mixed convection from horizontal impermeable surfaces in saturated porous media”, Int. J. Heat Mass Transfer, Vol.20, pp.893-898, 1977.
[2] Cheng P., “Combined free and forced convection flow about inclined surfaces in porous media”, Int. J. Heat Mass Transfer, Vol.20, pp.807-814, 1977.
[3] Minkowycz W. J., Cheng P., and Hirschberg R. H., “Non-similar boundary layer analysis of mixed convection about a horizontal heated surface in a saturated porous medium”, Int. Comm. Heat Mass Transfer, Vol.11, pp.127-141, 1984.
[4] Jang J. Y. and Chang W. J., “Buoyancy-induced inclined boundary layer flow in a porous medium resulting from combined heat and mass buoyancy effects”, Int. Comm. Heat Mass Transfer, Vol.15, pp.17-30, 1988.
[5] Jang J. Y. and Chang W. J., “Buoyancy-induced inclined boundary layer flow in a saturated porous medium”, Computer Methods in Applied Mechanics and Engineering Vol.68, pp.333-344, 1988.
[6] Hong J. T., Tien C. L., and Kaviany M., “Non-Darcian effects on vertical-plate natural convection in porous media with high porosities”, Int. J. of Heat and Mass Transfer, Vol.28, No. 11, pp.2149-2157, 1985.
[7] Chen C. H., Chen T. S., and Chen C. K., “Non-Darcian mixed convection along non-isothermal vertical surfaces in porous media”, Int. J. of Heat and Mass Transfer, Vol.39, No. 6, pp.1157-1164, 1996.
[8] Seddeek M. A., “Effects of non-Darcian on forced convection heat transfer over a flat plate in a porous medium-with temperature dependent viscosity”, Int. Communications in Heat and Mass Transfer, Vol.32, No. 1-2, pp.258-265, 2005.
[9] Wassel A. T., and Mills A. F., “Design Methodology for a Counter-current Falling Film Evaporative Condenser”, ASME J. of Heat Transfer, Vol. 109, pp.784-787, 1987.
[10] Schroppel J., and Thiele F., “On the Calculation of Momentum, Heat and Mass Transfer in Laminar and Turbulent Boundary layer Flow along a Vaporizing Liquid Film”, Numerical Heat Transfer, Vol.6, pp.475-496, 1983.
[11] Tsay Y. L., “Analysis of Heat and Mass Transfer in a Countercurrent-flow Wet Surface Heat Exchanger”, Int. J. Heat and Fluid Transfer,, Vol.15, pp.149-156, 1994.
[12] Tsay Y. L., “Heat Transfer Enhancement through Liquid Film Evaporation into Countercurrent Moist Air Flow in a Vertical Plate Channel”, Heat and Mass Transfer, Vol.30, pp.473-480, 1995.
[13] Yan W. M. and Soong C. Y., “Numerical study of liquid film cooling in a turbulent gas stream”, Int. J. Heat and Mass Transfer, 36, No.16, pp.3877-3885, 1993.
[14] Yan W. M. and Soong C. Y., “Convective heat and mass transfer along an inclined heated plate with film evaporation”, Int. J. Heat and Mass Transfer, Vol.38, No.7, pp.1261-1269, 1995.
[15] Mezaache E., and Daguenet M., “Effects of Inlet Conditions on Film Evaporation along an Inclined Plate”, Solar Energy, Vol. 78, pp.535-542, 2005.
[16] Char M. I., Lin J. D., Chen H. T., “Conjugate Mixed Convection Laminar non-Darcy Film Condensation along a Vertical Plate in a Porous Medium”, Int. J. of Engineering Science, Vol.39, pp. 897-912, 2001.
[17] Shih M. H., Huang M. J., and Chen C. K., “A study of liquid evaporation with Darcian resistance effect on mixed convection in porous media”, Int. Comm. in Heat Mass Transfer, Vol.32, pp.685-694, 2005.
[18] Leu J. S., Jang J. Y., and Chou Y., “Heat and mass transfer for liquid film evaporation along a vertical plate covered with a thin porous layer”, International Journal Heat and Mass Transfer, Vol.49, pp.1937-1945, 2006.
[19] Ergun, Fluid flow through packed columns, Chem. Engng. Progress, Vol.48, pp. 89-94, 1952.
[20] Batchelor G. K., “Heat Transfer by Free Convection across a Closed Cavity between Vertical Boundaries at Different Temperature”, Q. Appl. Math. , vol.12, pp.209-233, 1954.
[21] Yin S. H., Wung T. Y. and Chen K. ,“Natural Convection in an Air Layer Enclosed within Rectangular Cavity”, Int. J. Heat Mass Transfer, vol.21, pp.307-315, 1979
[22] Prasad V. and Kulacki F. A. , “Convective Heat Transfer in a Rectangular Porous Cavity – Effect of Aspect Ratio on Flow Structure and Heat Transfer”, Journal of Heat transfer, ASME, vol.106, pp.158-165,1984.
[23] Prasad V., “Thermal Convection in a Rectangular Cavity Fill with a Heat-Generating, Darcy Porous Medium”, Journal of Heat Transfer, ASME, vol.109, pp.697-703,1987.
[24] Tong T. W. , and Subramanian E., “Natural convection in rectangular enclosures partially filled with a porous medium”, Int. J. Heat and Fluid Flow, 1986.
[25] Beckermann C., Ramadhyani S. and Viskanta R., “Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure”, J. of Heat Transfer. Vol.109, 363-370, MAY 1987.
[26] Vasseur P. and Robillard L., “The Brinkman model for boundary layer regime in a rectangular cavity with uniform heat flux from the side”, Int. J. Heat Mass Transfer. Vol.30, No. 4, pp. 717-727, 1987.
[27] Jang J. Y. and Chen. C. N. , “Natural convection in a rectangular porous enclosure with a vertical conductive partition”, Interantianal Symposium on Natural Circulation, American Society of Mechanical Engineering, Winter Annual Meeting, Boston, MA., U.S.A., Dec.13-18, 1987.
[28] Shaw H. J., Chen C. K. and Jang J. Y., “Natural Convection in an Enclosure Heated from Below with a Conductive Horizontal Partition”, Journal of Thermophysics and Heat Transfer. Vol. 2, pp. 335-342. Oct. 1988.
[29] Darcy H., Les frontaines publiques de la ville de Dijon, Dalmont, paris, 1856.
[30] Slattery J. C., “Flow of viscoelastic fluids through porous medium”, AIChE J., vol.13, pp. 1066-1071, 1967.
[31] Whitaker S., “Diffusion and dispersion in porous medium”, AIChE J., vol.13, pp. 420-427, 1967.
[32] Forchheimer P., “Wasserbewegung durch Boden”, Forschtlft Ver. D. Ing., vol.45, pp. 1782-1788, 1901.
[33] Vafai K. and Tien C. L., “Boundary and inertia effects on flow and heat transfer in porous media”, Int. J. Heat Mass Transfer, vol.24, pp. 195-203, 1981.
[34] Brinkman H. C., “A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles”, Appl. Sci. Res., vol.1, pp. 27-34, 1947.
[35] Lundgren T. S., “Slow flow through stationary random beds and suspensions of spheres”, J. of Fluid Mech., vol.51, pp. 273-299, 1927.
[36] Prasad V., Kladias N., Bandyopanhara A. and Tian Q., “Evaluation of correlation for stagnant thermal conductivity of liquid-saturated porous beds of spheres”, Int. J. Heat Mass Transfer 32, pp.1793-1796, 1989.
[37] Zehner P. and Schlunder E. U., Waermeleleitfahigkeit von schuettungen bei massigen temperaturen, Chem. Ingr. Tech. 42, pp. 933-941,1970.
[38] Prasad V., “Convection flow interaction and heat transfer between fluid and porous layers”, NATO Advanced Study Institute on Convection Heat and Mass Transfer in Porous Medium, Izmir, Turkey, 1990.
[39] Hsu C. T. and Cheng P., Thermal dispersion in a porous medium, Int. J. Heat Mass Transfer, vol.33, pp. 1587-1597, 1990.
[40] Chang C. J., Lin T. F. and Yan W. M., “Natural convection flows in a vertical, open tube resulting from combined buoyancy effects of thermal and mass diffusion”, Int. J. Heat Mass Transfer 29, pp. 1543-1552, 1986
[41] Patankar S. V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing corporation, 1984