| 研究生: |
謝家揚 Hsieh, Chia-Yang |
|---|---|
| 論文名稱: |
扭轉結構雙層石墨烯的電子性質 Electronic properties of twisted bilayer graphene |
| 指導教授: |
林明發
Lin, Ming-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 緊束模型 、石墨烯 、態密度 |
| 外文關鍵詞: | tight-binding model, graphene, density of state |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用緊束模型來研究扭轉雙層石墨烯的基本電子性質。主要考量擁有擴大晶胞的可匹配雙層系統。同層之間僅有2pz軌域的π鍵結,但不同層之間存在複雜的π鍵結和σ鍵結。這些交互作用引起豐富的電子特色,包含以費米能為中心能帶上下不對稱、線性與拋物線能帶、等方與非等方性共存、價帶與導帶重疊形成半金屬和每一條能帶擁有幾個臨界點。能帶特色是由扭轉角度所決定,同時直接反應於態密度。DOS呈現許多肩膀以及對稱發散峰的二種結構,它們分別來自於極值點和馬鞍點。
We use the generalized tight-binding model to study fundamental electronic properties of twisted bilayer graphene. The main consideration is on a system which has mutual enlarged cell. The carbon atoms on the same layer only include the π bond in 2pz orbital. On the other hand, there exist the complex π and σ bonds between the different layers. These interactions lead to the extensive electronic properties. The energy band structure presents the asymmetric linear, parabolic energy bands with isotropic and non-isotropic coexistence. The valence and conduction bands overlap each other to form a semi-metal. The critical characteristics of the energy bands are determined by the twist angle which is directly reflected into the density of states (DOS). The DOS spectrum presents shoulder structure and symmetrical divergence peaks. They are, respectively, related to the extreme points and saddle points.
1. J. H. Ho, Y. H. Lai, Y. H. Chiu, M. F. Lin, Physica E40 1722-1725 (2008).
2.T. Nakanishi and T. Ando, J. Phys. Soc. Jpn. 70, 1647 (2001).
3.S. Uryu, Phys. Rev. B 69, 075402 (2004).
4.Min-Young Choi, Young-Hwan Hyun, and Yoonbai Kim, Phys. Rev. B 84, 195437 (2011).
5.G. Trambly de Laissardi´ere, D. Mayou, and L. Magaud, Nano Lett.10, 804 (2010).
6. E. Mele, Phys. Rev. B 81, 161405 (2010).
7.Pilkyung Moon and Mikito Koshino, Phys. Rev. B 87,205404 (2013)
8. Pilkyung Moon and Mikito Koshino, Phys. Rev. B 85,195458 (2012)
9.Mikito Koshino, Phys. Rev. B 88,115409 (2013)
10.Alexandr I. Cocemasov, Phys. Rev. B 88,035428(2013)
11. T. Ando, Y. Zheng, and H. Suzuura, J. Phys. Soc. Jpn.71, 1318 (2002).
12.V. Gusynin and S. Sharapov, Phys. Rev. B 73, 245411 (2006).
13. V. Gusynin, S. Sharapov, and J. Carbotte, Phys. Rev.
Lett. 96, 256802 (2006).
14. V. Gusynin, S. Sharapov, and J. Carbotte, Phys. Rev.
Lett. 98, 157402 (2007).
15.R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth,
T. Stauber, N. Peres, and A. Geim, Science 320, 1308 (2008).
16. J. Lopes dos Santos, N. Peres, and A. Castro Neto, Phys.
Rev. Lett. 99, 256802 (2007).
17. E. Morell, J. Correa, P. Vargas, M. Pacheco, and Z. Bar-
ticevic, Phys. Rev. B 82, 121407 (2010).
18. G. Trambly De Laissardi`ere, D. Mayou, and L. Magaud,
Nano Lett. 10, 804 (2010).
19. R. Bistritzer and A. MacDonald, PNAS 108, 12233 (2011).
20.J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Phys. Rev. B 86, 155449 (2012).
21. Z. Ni, Y. Wang, T. Yu, Y. You, and Z. Shen, Phys. Rev. B 77, 235403 (2008).
22. J. Hass, F. Varchon, J. Millan-Otoya, M. Sprinkle, N. Sharma, W. de Heer, C. Berger, P. First, L. Magaud, and E. Conrad, Phys. Rev. Lett. 100, 125504 (2008).
23.J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Phys. Rev. Lett. 99, 256802 (2007)
24.Wei Yan, Lan Meng, Mengxi Liu, Jia-Bin Qiao, Zhao-Dong Chu, Rui-Fen Dou, Zhongfan Liu, Jia-Cai Nie,Donald G. Naugle, and Lin He, Phys. Rev. B 90, 115402 (2014)
25. P. R. Wallace, Phys. Rev. 71, 622-634 (1947)
26.R. Satio, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press(1998)
27. S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov, Phys.Rev. B 81, 165105 (2010).
28. Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E.
Controlling the electronic structure of bilayer graphene. Science 2006,313, 951−954
29. Ohta, T.; el Gabaly, F.; Bostwick, A.; McChesney, J. L.; Emtsev, K. V.; Schmid, A. K.; Seyller, T.; Horn, K.; Rotenberg, E. Morphology of graphene thin film growth on SiC (0001). New J. Phys. 2008, 10,023034.
30. Zhou, S. Y.; Siegel, D. A.; Fedorov, A. V.; Lanzara, A. Metal to insulator transition in epitaxial graphene induced by molecular doping.Phys. Rev. Lett. 2008, 101, 086402.
31. Ohta, T.; Bostwick, A.; McChesney, J. L.; Seyller, T.; Horn, K.;Rotenberg, E. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2007, 98, 206802.
32. Sutter, P.; Hybertsen, M. S.; Sadowski, J. T.; Sutter, E.
Electronic structure of few-layer epitaxial graphene on Ru (0001).Nano Lett. 2009, 9, 2654−2660.
33.Wilder, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.;Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59−62.
34. Huang, H., Wei, D., Sun, J., Wong, S. L., Feng, Y. P., Neto, A. H.C., Wee, A. T. S. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons Sci. Rep. 20122.
35. Choi, J.; Lee, H.; Kim, S. Atomic-scale investigation of epitaxial graphene grown on 6H-SiC (0001) using scanning tunneling microscopy and spectroscopy. J. Phys. Chem. C 2010, 114, 13344−13348.
校內:2020-08-24公開