簡易檢索 / 詳目顯示

研究生: 陳胤臻
Chen, Yin-Jen
論文名稱: 多層含水層系統抽水引起沉陷之微擾分析模型建立
Subsidence of Multi-Aquifer Systems due to Pumping : A Model Based on A Perturbation Theory
指導教授: 林育芸
Lin, Yu-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 89
中文關鍵詞: 地層下陷抽水半解析解模型土壤
外文關鍵詞: land subsidence, pumping, semi-analytical model, soil
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地下水超抽所引起地層下陷的理論,大致上可分為地下水流非耦合理論及Biot流固耦合理論。非耦合理論將壓力水頭及沉陷量分開處理,將計算後的壓力水頭代入適當的土體變形模型求得沉陷量。其優點為計算快速,但土體變形模型較缺乏理論依據;Biot耦合理論完整的考慮三維壓力水頭與土體變形的相互影響,但計算費時。本文將利用微擾法(Fallou, Mei, and Lee (1992))分析Biot耦合方程式在層狀土壤多層含水層系統抽水引起沉陷情形。將分析簡化後的耦合微擾方程式與非耦合方程式比較說明。並利用Laplace變換及數值反演方法建立耦合微擾分析模型。
    此模型適用於多層含水層系統抽水問題,並考慮重力效應及自由含水層的影響,將三維空間問題轉化為數個二維空間問題。在理論基礎下,將壓力水頭與沉陷量分開計算,明顯增加計算效率。其計算結果與採用Biot耦合理論的有限元素模型結果比對,說明了此耦合微擾分析模型的正確性及有效性。
    最後,利用此模型討論多層含水層系統在不同情況下的行為。

    The theories of predicting the ground subsidence caused by excessive pumping of groundwater can be classified into two types: uncoupled theory of groundwater flow and coupled theory of Biot. Uncoupled theory calculates the drawdown and the subsidence separately. The subsidence was obtained by using an appropriate model of soil deformation with the calculated drawdown. Although the calculation can be fast, the soil deformation model lacks a theoretical basis. In the coupled theory of Biot, the full three-dimensional drawdown and deformation fields of soil interact mutually, but the calculation can be very time-consuming. This research adopts the perturbation theory developed by Fallou et al. (1992), which analyzes the coupled equations of Biot for the subsidence of a two-aquifer system due to pumping. We will compare the perturbed coupled equations with the uncoupled equations, and use the Laplace transform and numerical Laplace inversion method to establish the analysis model based on the perturbed coupled equations.
    This model is applicable to the pumping problem of a multi-aquifer system, and it also includes the effects of gravity and the phreatic aquifer. Using this model, the three-dimensional problem is decomposed into several two-dimensional problems. Based on the theory, the drawdown and the subsidence can be calculated separately. It increases the computational efficiency significantly. The calculated results have been validated by those of finite element model of Biot theory.
    Finally, using this analysis model, we discuss the time histories of the drawdown and the subsidence of a multi-aquifer system in different situations.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 多層含水層系統概論 2 1.3 本文內容與組織 3 第二章 文獻回顧 6 2.1 地下水流非耦合理論 6 2.2 流固耦合理論 7 第三章多層含水層滲流理論 10 3.1 非耦合分析-流體連續方程式 10 3.1.1 多層含水層系統流動方程式 10 3.1.3 Herrera's積分方程式 11 3.2 耦合分析-Biot孔隙彈性理論與微擾分析 12 3.2.1 三維孔隙彈性理論 13 3.2.2 無因次線性化控制方程式 16 3.2.3 無因次線性化邊界條件 17 3.2.4 含水層 20 3.2.5 自由含水層 23 3.2.6 阻水層 26 3.2.7 沉陷量 28 3.2.8 垂向總應力 29 第四章 耦合微擾分析之半解析解 32 4.1 耦合微擾分析與非耦合分析之比較 32 4.2 Laplace變換的半解析解 38 4.2.1 阻水層壓力水頭半解析解 39 4.2.2 自由含水層、含水層壓力水頭半解析解 41 4.2.3 沉陷量半解析解 45 第五章 多層含水層系統抽水引起沉陷的數值結果 47 5.1 多層侷限含水層系統 47 5.1.1 二層侷限含水層 48 5.1.2 三層侷限含水層 49 5.1.3 四層侷限含水層 52 5.2 自由含水層的影響 53 5.3 重力場的影響 54 5.4 有限不規則邊界抽水問題 55 5.5 變量抽水情形 56 第六章 結果與討論 78 參考文獻 81 附錄一:輔助函數解 86 附錄二:局部座標系下流量表示式 87 附錄三:Laplace數值反演 88

    Abate, J., & Whitt, W. A Unified Framework for Numerically Inverting Laplace Transforms. Informs Journal on Computing, 18(4), 408-421, 2006.
    Ai, Z. Y., Cheng, Z. Y., & Han, J. State Space Solution to Three-Dimensional Consolidation of Multi-Layered Soils. International Journal of Engineering Science, 46(5), 486-498, 2008.
    Ai, Z. Y., Wang, Q. S., & Wu, C. A New Method for Solving Biot’s Consolidation of a Finite Soil Layer in the Cylindrical Coordinate System. Acta Mechanica Sinica, 24(6), 691-697, 2008.
    Ai, Z. Y., Zeng, W. Z., Cheng, Y. H., & Wu, C. Uncoupled State Space Solution to Layered Poroelastic Medium with Anisotropic Permeability and Compressible Pore Fluid. Frontiers of Architecture and Civil Engineering in China, 5(2), 171-179, 2011.
    Bear, J. (1979). Hydraulics of Groundwater: McGraw-Hill International Book Co.
    Bear, J., & Corapcioglu, M. Y. Mathematical-Model for Regional Land Subsidence Due to Pumping .1. Integrated Aquifer Subsidence Equations Based on Vertical Displacement Only. Water Resources Research, 17(4), 937-946, 1981a.
    Bear, J., & Corapcioglu, M. Y. Mathematical Model for Regional Land Subsidence Due to Pumping: 2. Integrated Aquifer Subsidence Equations for Vertical and Horizontal Displacements. Water Resources Research, 17(4), 947-958, 1981b.
    Biot, M. A. General Theory of Three Dimensional Consolidation. Journal of Applied Physics, 12(2), 155-164, 1941.
    Boulton, N. S. The Influence of Delayed Drainage on Data from Pumping Tests in Unconfined Aquifers. Journal of Hydrology, 19(2), 157-169, 1973.
    Carbognin, L., Cecconi, G., & Ardone , V. Investigation to Safe Guard the Environment of the Venice Lagoon(Italy) against the Effects of Land Elevation Loss. Proceeding of the Sixth International Symposium on Land Subsidence(24-29 September), 2, 309-324, 2000.
    Chen, C. S., & Stone, W. D. Asymptotic Calculation of Laplace Inverse in Analytical Solutions of Groundwater Problems. Water Resources Research, 29(1), 207-209, 1993.
    Cheng, A. H. D., & Morohunfola, O. K. Multilayered Leaky Aquifer Systems .1. Pumping Well Solutions. Water Resources Research, 29(8), 2787-2800, 1993a.
    Cheng, A. H. D., & Morohunfola, O. K. Multilayered Leaky Aquifer Systems .2. Boundary-Element Solutions. Water Resources Research, 29(8), 2801-2811, 1993b.
    Cheng, A. H. D., & Ou, K. S. An Efficient Laplace Transform Solution for Multiaquifer Systems. Water Resources Research, 25(4), 742-748, 1989.
    Chorley, D. W., & Frind, E. O. An Iterative Quasi-Three-Dimensional Finite Element Model for Heterogeneous Multiaquifer Systems. Water Resources Research, 14(5), 943-952, 1978.
    Corapcioglu, M. Y., & Bear, J. A Mathematical-Model for Regional Land Subsidence Due to Pumping .3. Integrated Equations for a Phreatic Aquifer. Water Resources Research, 19(4), 895-908, 1983.
    Detournay, E., & Cheng, A. H. D. Poroelastic Response of a Borehole in a Non-Hydrostatic Stress-Field. International Journal of Rock Mechanics and Mining Sciences, 25(3), 171-182, 1988.
    Fallou, S. N., Mei, C. C., & Lee, C. K. Subsidence Due to Pumping from Layered Soil - a Perturbation-Theory. International Journal for Numerical and Analytical Methods in Geomechanics, 16(3), 157-187, 1992.
    Gambolati, G., & Freeze, R. A. Mathematical Simulation of the Subsidence of Venice: 1. Theory. Water Resources Research, 9(3), 721-733, 1973.
    Gambolati, G., Sartoretto, F., & Uliana, F. A Conjugate-Gradient Finite-Element Model of Flow for Large Multiaquifer Systems. Water Resources Research, 22(7), 1003-1015, 1986.
    Gutierrez, M. S., & Lewis, R. W. Coupling of Fluid Flow and Deformation in Underground Formations. Journal of Engineering Mechanics-Asce, 128(7), 779-787, 2002.
    Hantush, M. S. Modification of the Theory of Leaky Aquifers. Journal of Geophysical Research, 65(5), 1634-1634, 1960.
    Hassanzadeh, H., & Pooladi-Darvish, M. Comparison of Different Numerical Laplace Inversion Methods for Engineering Applications. Applied Mathematics and Computation, 189(2), 1966-1981, 2007.
    Herrera, I. Theory of Multiple Leaky Aquifers. Water Resources Research, 6(1), 185-193, 1970.
    Herrera, I., & Figueroa V, G. E. A Correspondence Principle for the Theory of Leaky Aquifers. Water Resources Research, 5(4), 900-904, 1969.
    Herrera, I., & Rodarte, L. Integrodifferential Equations for Systems of Leaky Aquifers and Applications: 1. The Nature of Approximate Theories. Water Resources Research, 9(4), 995-1005, 1973.
    Herrera, I., & Yates, R. Integrodifferential Equations for Systems of Leaky Aquifers and Applications 3. A Numerical Method of Unlimited Applicability. Water Resources Research, 13(4), 725-732, 1977.
    Hunt, B., & Scott, D. Extension of Hantush and Boulton Solutions. Journal of Hydrologic Engineering, 10(3), 223-236, 2005.
    Hunt, B., & Scott, D. Flow to a Well in a Two-Aquifer System. Journal of Hydrologic Engineering, 12(2), 146-155, 2007.
    Lee, C. K., Fallou, S. N., & Mei, C. C. Subsidence Due to Pumping from a Soil Stratum with a Soft Aquitard. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 339(1653), 193-230, 1992.
    Lewis, R. W., & Schrefler, B. A Fully Coupled Consolidation Model of the Subsidence of Venice. Water Resources Research, 14(2), 223-230, 1978.
    Liu, C. W., Lin, W. S., Shang, C., & Liu, S. H. The Effect of Clay Dehydration on Land Subsidence in the Yun-Lin Coastal Area, Taiwan. Environmental Geology, 40(4-5), 518-527, 2001.
    Mathias, S. A., & Zimmerman, R. W. Laplace Transform Inversion for Late-Time Behavior of Groundwater Flow Problems. Water Resources Research, 39(10), 2003.
    Mei, C. C. Gravity Effects in Consolidation of Layer of Soft Soil. Journal of Engineering Mechanics-Asce, 111(8), 1038-1047, 1985.
    Neuman, S. P. Theory of Flow in Unconfined Aquifers Considering Delayed Response of the Water Table. Water Resources Research, 8(4), 1031-1045, 1972.
    Neuman, S. P., Preller, C., & Narasimhan, T. N. Adaptive Explicit-Implicit Quasi Three-Dimensional Finite Element Model of Flow and Subsidence in Multiaquifer Systems. Water Resources Research, 18(5), 1551-1561, 1982.
    Neuman, S. P., & Witherspoon, P. A. Applicability of Current Theories of Flow in Leaky Aquifers. Water Resources Research, 5(4), 817-829, 1969a.
    Neuman, S. P., & Witherspoon, P. A. Theory of Flow in a Confined Two Aquifer System. Water Resources Research, 5(4), 803-816, 1969b.
    Premchitt, J. A Technique in Using Integrodifferential Equations for Model Simulation of Multiaquifer Systems. Water Resources Research, 17(1), 162-168, 1981.
    Rodarte, L. Theory of Multiple Leaky Aquifers: 1. The Integrodifferential and Differential Equations for Small and Large Values of Time. Water Resources Research, 12(2), 163-170, 1976.
    Safai, N. M., & Pinder, G. F. Vertical and Horizontal Land Deformation in a Desaturating Porous Medium. Advances in Water Resources, 2(0), 19-25, 1979.
    Safai, N. M., & Pinder, G. F. Vertical and Horizontal Land Deformation Due to Fluid Withdrawal. International Journal for Numerical and Analytical Methods in Geomechanics, 4(2), 131-142, 1980.
    Schapery, R. A. Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis. Proc. U.S. Natl. Congr. Appl. Mech. 4th, 2, 1075-1085, 1962.
    Stehfest, H. Algorithm 368: Numerical Inversion of Laplace Transforms [D5]. Commun. ACM, 13(1), 47-49, 1970.
    Theis, C. V. The Relation between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground Water Storage. Transactions-American Geophysical Union, 16, 519-524, 1935.
    Tsai, T. L., Chang, K. C., & Huang, L. H. Body Force Effect on Consolidation of Porous Elastic Media Due to Pumping. Journal of the Chinese Institute of Engineers, 29(1), 75-82, 2006.
    Tseng, C. M., Tsai, T. L., & Huang, L. H. Effects of Body Force on Transient Poroelastic Consolidation Due to Groundwater Pumping. Environmental Geology, 54(7), 1507-1516, 2008.
    Verruijt, A. Displacement Functions in the Theory of Consolidation or in Thermoelasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP, 22(5), 891-898, 1971.
    Wang, J., & Fang, S. State Space Solution of Non-Axisymmetric Biot Consolidation Problem for Multilayered Porous Media. International Journal of Engineering Science, 41(15), 1799-1813, 2003.
    林瑞琦,一維耦合地層下陷模式之建立,國立台灣大學碩士論文,2001。
    柳志錫,複雜含水地層之抽水沉陷行為,國立交通大學博士論文,2004。
    洪以璇,多層含水層抽水引起壓密問題之耦合分析,國立成功大學碩士論文,2012。

    下載圖示 校內:2018-07-24公開
    校外:2018-07-24公開
    QR CODE