簡易檢索 / 詳目顯示

研究生: 管軒政
Kuan, Hsuan-Cheng
論文名稱: 富含氮和羰基的共軛小分子有機陰極材料應用於高性能鈉離子電池
A Nitrogen- and Carbonyl-Rich Conjugated Small-Molecule Organic Cathode for High-Performance Sodium-Ion Batteries
指導教授: 柯碧蓮
Watchareeya Kaveevivitchai
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 89
中文關鍵詞: 大型儲能系統鈉離子電池小分子有機陰極材料多電子接收體永續性
外文關鍵詞: Large-scale energy storage systems, Sodium-ion batteries, Small organic cathode material, Multi-electron acceptor, Sustainability
相關次數: 點閱:48下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機材料基於資源豐富、化學及物理可調性、低毒性、加工過程環保和可回收性,因此在永續鈉離子電池領域受到越來越多的關注。此外,有機分子間的弱作用力(氫鍵和凡得瓦力)使其結構較為柔軟以確保便捷且可逆的鈉離子傳輸。在此,我們研究了一種富含氮和羰基的高度擴展π-共軛小分子,即HATA內嵌醌形成HATAQ,將其作為鈉離子電池的陰極。高度官能化的HATAQ分子其理論電容量高達515 mAh g−1 (最多12個e−),在500 mAh g−1測試條件下,其電容量可達到460 mAh g−1,並且在60 mA g−1的極高速率下循環5000次後,其電容量仍可維持99% (約138 mAh g−1)。HATAQ 分子間的π-π堆疊和不尋常的氫鍵所形成的固態超分子、類石墨二維層狀排列是其在長期循環過程中具有高結構穩定性和其快捷電荷轉移的原因。通過循環伏安法、拉曼光譜、X 射線光電子能譜、電子順磁共振等多種技術以及密度泛函理論(DFT)研究,闡明了該材料的反應動力學和氧化還原機制。這項工作凸顯了小分子有機陰極材料應用於未來能量存儲裝置的無限潛力。

    Organic-based materials have attracted increasing attention for sustainable Na-ion batteries due to their abundant resources, chemical/physical tunability, low toxici-ty, eco-friendly processing, and recyclability. Additionally, the structural flexibility stemming from the weak intermolecular interactions (e.g., hydrogen bonds and van der Waals forces) between organic molecules ensures the facile and reversible transport of Na ions. Herein, a nitrogen- and carbonyl-rich highly extended π-conjugated small molecule, hexaazatrianthranylene (HATA) embedded quinone (HATAQ), has been investigated as a cathode for sodium-ion batteries. The highly functionalized molecule with a high theoret-ical capacity of 515 mAh g−1 (up to 12 e−) can deliver a capacity as high as 460 mA h g−1 at 500 mA g−1 and an excellent capacity retention of 99% (~138 mA h g−1) after 5000 cy-cles at an extremely high rate of 60 A g−1. The supramolecular, graphite-like 2D layer ar-rangements in the solid state assisted by the π-π stacking and unusual hydrogen bonds be-tween HATAQ molecules are responsible for the high structural stability during long-term cycling and facile charge transfer. The reaction kinetics and redox mechanism of the ma-terial have been elucidated by several techniques, such as cyclic voltammetry, Raman spectroscopy, X-ray photoelectron spectroscopy, and electron paramagnetic resonance, together with density functional theory (DFT) studies. This work highlights the unlimited potential of using small organic molecule cathode materials for next-generation energy storage.

    摘要 I Abstract II Acknowledgments IV Table of Contents V List of Figures VII List of Tables XIII Chapter 1 Introduction 1 1.1 Energy Storage Systems 1 1.2 Comparison between Li and Na 2 1.3 Influencing Factors of the Kinetic Properties 4 1.4 Electrolytes 5 1.3.1 Basic Properties 7 1.3.2 Typical Interactions Between Salt and Solvent 10 1.3.2 Influential Factors of the Properties of Electrode Electrolyte Interphase 11 1.5 Classification of Cathode Materials 17 1.6 Organic Materials 19 1.6.1 Carbonyl Compounds (C=O Bond Reactions) 20 1.6.2 Imine Compounds (C=N Bond Reactions) 23 1.6.3 Azo Compounds (N=N Bond Reactions) 24 1.6.4 n-Doping and p-Doping 25 1.6.5 Challenges and Strategy to Improve Organic-Based Materials 26 Chapter 2 Research Outline 41 2.1 The Source of Inspiration for the HATAQ Molecule 41 2.2 Experimental Methods 45 2.2.1 Materials 45 2.2.2 Electrochemical Studies 47 2.2.3 Electrode Mechanistic Studies 48 2.2.4 Experimental Instruments 49 Chapter 3 Results and Discussion 51 3.1 Structural Characterization 51 3.2 Optimization of Testing Condition 52 3.3 Electrochemical Performance 58 3.4 Electrochemical Kinetics 62 3.5 Redox Mechanism 64 Conclusions 75 References 76

    (1) Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636−11682.
    (2) Crank, J. The Mathematics of Diffusion; Oxford university press, 1979.
    (3) Okoshi, M.; Yamada, Y.; Yamada, A.; Nakai, H. Theoretical Analysis on de-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents. J. Electrochem. Soc. 2013, 160, A2160.
    (4) Levi, M.; Aurbach, D. Simultaneous Measurements and Modeling of the Electrochemical Impedance and the Cyclic Voltammetric Characteristics of Graphite Electrodes Doped with Lithium. J. Phys. Chem. B 1997, 101, 4630−4640.
    (5) Abe, T.; Fukuda, H.; Iriyama, Y.; Ogumi, Z. Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte. J. Electrochem. Soc. 2004, 151, A1120.
    (6) Abe, T.; Sagane, F.; Ohtsuka, M.; Iriyama, Y.; Ogumi, Z. Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-a Key to Enhancing the Rate Capability of Lithium-Ion Batteries. J. Electrochem. Soc. 2005, 152, A2151.
    (7) Muñoz‐Márquez, M. Á.; Zarrabeitia, M.; Passerini, S.; Rojo, T. Structure, Composition, Transport Properties, and Electrochemical Performance of the Electrode‐Electrolyte Interphase in Non‐Aqueous Na‐Ion Batteries. Adv. Mater. Interfaces 2022, 9, 2101773.
    (8) Li, Y.; Wu, F.; Li, Y.; Liu, M.; Feng, X.; Bai, Y.; Wu, C. Ether-Based Electrolytes for Sodium Ion Batteries. Chem. Soc. Rev. 2022, 51, 4484−4536.
    (9) Huang, Y.; Zhao, L.; Li, L.; Xie, M.; Wu, F.; Chen, R. Electrolytes and Electrolyte/Electrode Interfaces in Sodium‐Ion Batteries: from Scientific Research to Practical Application. Adv. Mater. 2019, 31, 1808393.
    (10) Carbone, L.; Gobet, M.; Peng, J.; Devany, M.; Scrosati, B.; Greenbaum, S.; Hassoun, J. Comparative Study of Ether-Based Electrolytes for Application in Lithium–Sulfur Battery. ACS Appl. Mater. Interfaces 2015, 7, 13859−13865.
    (11) Peljo, P.; Girault, H. H. Electrochemical Potential Window of Battery Electrolytes: the HOMO–LUMO Misconception. Energy Environ. Sci. 2018, 11, 2306−2309.
    (12) Schroder, K. W.; Dylla, A. G.; Bishop, L. D.; Kamilar, E. R.; Saunders, J.; Webb, L. J.; Stevenson, K. J. Effects of Solute–Solvent Hydrogen Bonding on Nonaqueous Electrolyte Structure. J. Phys. Chem. 2015, 6, 2888−2891.
    (13) Tian, Z.; Zou, Y.; Liu, G.; Wang, Y.; Yin, J.; Ming, J.; Alshareef, H. N. Electrolyte Solvation Structure Design for Sodium Ion Batteries. Adv. Sci. 2022, 9, 2201207.
    (14) Wang, E.; Niu, Y.; Yin, Y.-X.; Guo, Y.-G. Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives. ACS Mater. Lett. 2020, 3, 18−41.
    (15) Yan, C.; Xu, R.; Xiao, Y.; Ding, J. F.; Xu, L.; Li, B. Q.; Huang, J. Q. Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries. Adv. Funct. Mater. 2020, 30, 1909887.
    (16) Yoon, G.; Kim, H.; Park, I.; Kang, K. Conditions for Reversible Na Intercalation in Graphite: Theoretical Studies on the Interplay among Guest Ions, Solvent, and Graphite Host. Adv. Energy Mater. 2017, 7, 1601519.
    (17) Vitoriano, N. O.; de Larramendi, I. R.; Sacci, R. L.; Lozano, I.; Bridges, C. A.; Arcelus, O.; Enterría, M.; Carrasco, J.; Rojo, T.; Veith, G. Goldilocks and the three glymes: How Na+ Solvation Controls Na–O2 Battery Cycling. Energy Storage Mater. 2020, 29, 235−245.
    (18) Fondard, J.; Irisarri, E.; Courreges, C.; Palacín, M. R.; Ponrouch, A.; Dedryvère, R. SEI Composition on Hard Carbon in Na-Ion Batteries after Long Cycling: Influence of Salts (NaPF6, NaTFSI) and Additives (FEC, DMCF). J. Electrochem. Soc. 2020, 167, 070526.
    (19) Soto, F. A.; Yan, P.; Engelhard, M. H.; Marzouk, A.; Wang, C.; Xu, G.; Chen, Z.; Amine, K.; Liu, J.; Sprenkle, V. L. Tuning the Solid Electrolyte Interphase for Selective Li‐and Na‐Ion Storage in Hard Carbon. Adv. Mater. 2017, 29, 1606860.
    (20) Cao, R.; Mishra, K.; Li, X.; Qian, J.; Engelhard, M. H.; Bowden, M. E.; Han, K. S.; Mueller, K. T.; Henderson, W. A.; Zhang, J.-G. Enabling Room Temperature Sodium Metal Batteries. Nano Energy 2016, 30, 825−830.
    (21) Zheng, J.; Chen, S.; Zhao, W.; Song, J.; Engelhard, M. H.; Zhang, J.-G. Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes. ACS Energy Lett. 2018, 3, 315−321.
    (22) Li, Y.; Yang, Y.; Lu, Y.; Zhou, Q.; Qi, X.; Meng, Q.; Rong, X.; Chen, L.; Hu, Y.-S. Ultralow-Concentration Electrolyte for Na-Ion Batteries. ACS Energy Lett. 2020, 5, 1156−1158.
    (23) Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-Type Nax[Fe1/2Mn1/2]O2 Made from Earth-Abundant Elements for Rechargeable Na Batteries. Nat. Mater. 2012, 6, 512−517.
    (24) Yuan, D.; He, W.; Pei, F.; Wu, F.; Wu, Y.; Qian, J.; Cao, Y.; Ai, X.; Yang, H. Synthesis and Electrochemical Behaviors of Layered Na0.67[Mn0.65Co0.2Ni0.15]O2 Microflakes as a Stable Cathode Material for Sodium-Ion Batteries. J. Mater. Chem. A 2013, 1, 3895−3899.
    (25) Masquelier, C.; Croguennec, L. Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chem. Rev. 2013, 113, 6552−6591.
    (26) You, Y.; Wu, X.-L.; Yin, Y.-X.; Guo, Y.-G. High−Quality Prussian Blue Crystals as Superior Cathode Materials for Room−Temperature Sodium−Ion Batteries. Energy Environ. Sci. 2014, 5, 1643−1647.
    (27) Kim, H.; Kwon, J. E.; Lee, B.; Hong, J.; Lee, M.; Park, S. Y.; Kang, K. High Energy Organic Cathode for Sodium Rechargeable Batteries. Chem. Mater. 2015, 27, 7258−7264.
    (28) Zhao, Q.; Lu, Y.; Chen, J. Advanced Organic Electrode Materials for Rechargeable Sodium‐Ion Batteries. Adv. Energy Mater. 2017, 7, 1601792.
    (29) Luo, W.; Allen, M.; Raju, V.; Ji, X. An Organic Pigment as a High‐Performance Cathode for Sodium‐Ion Batteries. Adv. Energy Mater. 2014, 4, 1400554.
    (30) Wang, H. g.; Yuan, S.; Ma, D. l.; Huang, X. l.; Meng, F. l.; Zhang, X. b. Tailored Aromatic Carbonyl Derivative Polyimides for High‐Power and Long‐Cycle Sodium‐Organic Batteries. Adv. Energy Mater. 2014, 4, 1301651.
    (31) Castillo‐Martínez, E.; Carretero‐González, J.; Armand, M. Polymeric Schiff Bases as Low‐Voltage Redox Centers for Sodium‐Ion Batteries. Angew. Chem., Int. Ed. 2014, 53, 5341−5345.
    (32) Hong, J.; Lee, M.; Lee, B.; Seo, D.-H.; Park, C. B.; Kang, K. Biologically Inspired Pteridine Redox Centres for Rechargeable Batteries. Nat. Commun 2014, 5, 5335.
    (33) Kim, J.-K.; Kim, Y.; Park, S.; Ko, H.; Kim, Y. Encapsulation of Organic Active Materials in Carbon Nanotubes for Application to High-Electrochemical-Performance Sodium Batteries. Energy Environ. Sci. 2016, 9, 1264−1269.
    (34) Liu, S.; Wang, F.; Dong, R.; Zhang, T.; Zhang, J.; Zhuang, X.; Mai, Y.; Feng, X. Dual‐Template Synthesis of 2d Mesoporous Polypyrrole Nanosheets with Controlled Pore Size. Adv. Mater. 2016, 28, 8365−8370.
    (35) Zhou, M.; Li, W.; Gu, T.; Wang, K.; Cheng, S.; Jiang, K. A Sulfonated Polyaniline with High Density and High Rate Na-Storage Performances as a Flexible Organic Cathode for Sodium Ion Batteries. ChemComm 2015, 51, 14354−14356.
    (36) Ulas, G.; Lemmin, T.; Wu, Y.; Gassner, G. T.; DeGrado, W. F. Designed Metalloprotein Stabilizes a Semiquinone Radical. Nat. Chem. 2016, 8, 354−359.
    (37) Wu, S.; Wang, W.; Li, M.; Cao, L.; Lyu, F.; Yang, M.; Wang, Z.; Shi, Y.; Nan, B.; Yu, S. Highly Durable Organic Electrode for Sodium-Ion Batteries via a Stabilized α-C Radical Intermediate. Nat. Commun. 2016, 7, 13318.
    (38) Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H. Polymer-Bound Pyrene-4, 5, 9, 10-Tetraone for Fast-Charge and Discharge Lithium-Ion Batteries with High Capacity. J. Am. Chem. Soc. 2012, 134, 19694−19700.
    (39) Zhu, L.; Niu, Y.; Cao, Y.; Lei, A.; Ai, X.; Yang, H. n-Type Redox Behaviors of Polybithiophene and its Implications for Anodic Li and Na Storage Materials. Electrochim. Acta 2012, 78, 27−31.
    (40) Sun, T.; Li, Z. j.; Wang, H. g.; Bao, D.; Meng, F. l.; Zhang, X. b. A Biodegradable Polydopamine‐Derived Electrode Material for High‐Capacity and Long‐Life Lithium‐Ion and Sodium‐Ion Batteries. Angew. Chem., Int. Ed. 2016, 55, 10662−10666.
    (41) Liu, T.; Kim, K. C.; Lee, B.; Chen, Z.; Noda, S.; Jang, S. S.; Lee, S. W. Self-Polymerized Dopamine as an Organic Cathode for Li-and Na-ion Batteries. Energy Environ. Sci. 2017, 10, 205−215.
    (42) Wang, Y.; Kretschmer, K.; Zhang, J.; Mondal, A. K.; Guo, X.; Wang, G. Organic Sodium Terephthalate@ Graphene Hybrid Anode Materials for Sodium-Ion Batteries. RSC Adv. 2016, 6, 57098−57102.
    (43) Luo, C.; Zhu, Y.; Xu, Y.; Liu, Y.; Gao, T.; Wang, J.; Wang, C. Graphene Oxide Wrapped Croconic Acid Disodium Salt for Sodium Ion Battery Electrodes. J. Power Sources 2014, 250, 372−378.
    (44) Chen, J.; Liu, Y.; Li, W.; Wu, C.; Xu, L.; Yang, H. Nanostructured Polystyrene/Polyaniline/Graphene Hybrid Materials for Electrochemical Supercapacitor and Na-Ion Battery Applications. J. Mater. Sci. 2015, 50, 5466−5474.
    (45) Guo, C.; Zhang, K.; Zhao, Q.; Pei, L.; Chen, J. High-Performance Sodium Batteries with the 9, 10-Anthraquinone/CMK-3 Cathode and an Ether-Based Electrolyte. ChemComm 2015, 51, 10244−10247.
    (46) Peng, C.; Ning, G.-H.; Su, J.; Zhong, G.; Tang, W.; Tian, B.; Su, C.; Yu, D.; Zu, L.; Yang, J. Reversible Multi-Electron Redox Chemistry of π-Conjugated N-Containing Heteroaromatic Molecule-Based Organic Cathodes. Nat. Energy 2017, 2, 1−9.
    (47) Wu, M. S.; Luu, N. T.; Chen, T. H.; Lyu, H.; Huang, T. W.; Dai, S.; Sun, X. G.; Ivanov, A. S.; Lee, J. C.; Popovs, I. Supramolecular Self‐Assembled Multi‐Electron‐Acceptor Organic Molecule as High‐Performance Cathode Material for Li‐Ion Batteries. Adv. Energy Mater. 2021, 11, 2100330.
    (48) Sun, T.; Feng, X. L.; Sun, Q. Q.; Yu, Y.; Yuan, G. B.; Xiong, Q.; Liu, D. P.; Zhang, X. B.; Zhang, Y. Solvation Effect on the Improved Sodium Storage Performance of N‐Heteropentacenequinone for Sodium‐Ion Batteries. Angew. Chem., Int. Ed. 2021, 133, 27010−27016.
    (49) Kondo, Y.; Abe, T.; Yamada, Y. Kinetics of Interfacial Ion Transfer in Lithium-Ion Batteries: Mechanism Understanding and Improvement Strategies. ACS Appl. Mater. Interfaces 2022, 14, 22706−22718.
    (50) Zhao, Q.; Zhao, W.; Zhang, C.; Wu, Y.; Yuan, Q.; Whittaker, A. K.; Zhao, X. Sodium-Ion Storage Mechanism in Triquinoxalinylene and a Strategy for Improving Electrode Stability. Energy & Fuels 2020, 34, 5099−5105.
    (51) Wang, C.; Xu, Y.; Fang, Y.; Zhou, M.; Liang, L.; Singh, S.; Zhao, H.; Schober, A.; Lei, Y. Extended π-Conjugated System for Fast-Charge and Discharge sodium-ion Batteries. J. Am. Chem. Soc. 2015, 137, 3124−3130.
    (52) Kolek, M.; Otteny, F.; Schmidt, P.; Mück-Lichtenfeld, C.; Einholz, C.; Becking, J.; Schleicher, E.; Winter, M.; Bieker, P.; Esser, B. Ultra-High Cycling Stability of Poly (Vinylphenothiazine) as a Battery Cathode Material Resulting from π–π Interactions. Energy Environ. Sci. 2017, 10, 2334−2341.
    (53) Lu, Y.; Chen, J. Prospects of Organic Electrode Materials for Practical Lithium Batteries. Nat. Rev. Chem. 2020, 4, 127−142.
    (54) Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. Chem. Rev. 2020, 120, 6490−6557.
    (55) Jiang, Q.; Xiong, P.; Liu, J.; Xie, Z.; Wang, Q.; Yang, X. Q.; Hu, E.; Cao, Y.; Sun, J.; Xu, Y. A Redox‐Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angew. Chem., Int. Ed. 2020, 59, 5273−5277.
    (56) Cook, J. B.; Kim, H. S.; Lin, T. C.; Lai, C. H.; Dunn, B.; Tolbert, S. H. Pseudocapacitive Charge Storage in Thick Composite MoS2 Nanocrystal‐Based Electrodes. Adv. Energy Mater. 2017, 7, 1601283.
    (57) Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (anatase) Nanoparticles. J. Phys. Chem. C 2007, 111, 14925−14931.
    (58) Lim, E.; Jo, C.; Kim, H.; Kim, M.-H.; Mun, Y.; Chun, J.; Ye, Y.; Hwang, J.; Ha, K.-S.; Roh, K. C. Facile Synthesis of Nb2O5@ Carbon Core–Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. ACS nano 2015, 9, 7497−7505.
    (59) Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L.-P.; Zhang, Y.; Wang, Y. Boosting Lithium Storage in Covalent Organic Framework via Activation of 14-Electron Redox Chemistry. Nat. Commun. 2018, 9, 576.
    (60) Zhuang, B.; Fujitsuka, M.; Tojo, S.; Cho, D. W.; Choi, J.; Majima, T. Influence of Charge Distribution on Structural Changes of Aromatic Imide Derivatives upon One-Electron Reduction Revealed by Time-Resolved Resonance Raman Spectroscopy during Pulse Radiolysis. J. Phys. Chem. 2018, 122, 8738−8744.
    (61) Shi, R.; Liu, L.; Lu, Y.; Wang, C.; Li, Y.; Li, L.; Yan, Z.; Chen, J. Nitrogen-Rich Covalent Organic Frameworks with Multiple Carbonyls for High-Performance Sodium Batteries. Nat. Commun 2020, 11, 178.
    (62) Xue, Q.; Li, D.; Huang, Y.; Zhang, X.; Ye, Y.; Fan, E.; Li, L.; Wu, F.; Chen, R. Vitamin K as a High-Performance Organic Anode Material for Rechargeable Potassium Ion Batteries. J. Mater. Chem. A 2018, 6, 12559−12564.
    (63) Lin, Z.-Q.; Xie, J.; Zhang, B.-W.; Li, J.-W.; Weng, J.; Song, R.-B.; Huang, X.; Zhang, H.; Li, H.; Liu, Y. Solution-Processed Nitrogen-Rich Graphene-Like Holey Conjugated Polymer for Efficient Lithium Ion Storage. Nano Energy 2017, 41, 117−127.
    (64) Gu, S.; Wu, S.; Cao, L.; Li, M.; Qin, N.; Zhu, J.; Wang, Z.; Li, Y.; Li, Z.; Chen, J. Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. J. Am. Chem. Soc. 2019, 141, 9623−9628.
    (65) Chihara, K.; Chujo, N.; Kitajou, A.; Okada, S. Cathode Properties of Na2C6O6 for Sodium-Ion Batteries. Electrochim. Acta 2013, 110, 240–246.
    (66) Wang, Y.; Ding, Y.; Pan, L.; Shi, Y.; Yue, Z.; Shi, Y.; Yu, G. Understanding the
    Size-Dependent Sodium Storage Properties of Na2C6O6-Based Organic Electrodes for Sodium-Ion Batteries. Nano Lett. 2016, 16, 3329–3334.
    (67) Lee, M.; Hong, J.; Lopez, J.; Sun, Y.; Feng, D.; Lim, K.; Chueh, W. C.; Toney, M.
    F.; Cui, Y.; Bao, Z. High-Performance Sodium–Organic Battery by Realizing Foursodium Storage in Disodium Rhodizonate. Nat. Energy 2017, 2, 861–868.
    (68) Wang, S.; Wang, L.; Zhu, Z.; Hu, Z.; Zhao, Q.; Chen, J. All Organic Sodium‐Ion
    Batteries with Na4C8H2O6. Angew. Chem., Int. Ed. 2014, 126, 6002–6006.
    (69) Li, D.; Tang, W.; Yong, C. Y.; Tan, Z. H.; Wang, C.; Fan, C. Long‐Lifespan
    Polyanionic Organic Cathodes for Highly Efficient Organic Sodium‐Ion Batteries.
    ChemSusChem 2020, 13, 1991–1996.
    (70) Tang, W.; Liang, R.; Li, D.; Yu, Q.; Hu, J.; Cao, B.; Fan, C. Highly Stable and High
    Rate‐Performance Na‐Ion Batteries Using Polyanionic Anthraquinone as the Organic Cathode. ChemSusChem 2019, 12, 2181–2185.
    (71) Wang, H.; Hu, P.; Yang, J.; Gong, G.; Guo, L.; Chen, X. Renewable‐Juglone‐Based
    High‐Performance Sodium‐Ion Batteries. Adv. Mater. 2015, 27, 2348–2354.
    (72) Yuan, C.; Wu, Q.; Li, Q.; Duan, Q.; Li, Y.; Wang, H.-g. Nanoengineered Ultralight
    Organic Cathode Based on Aromatic Carbonyl Compound/graphene Aerogel for Green Lithium and Sodium Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 8392–8399.
    (73) Yuan, C.; Wu, Q.; Shao, Q.; Li, Q.; Gao, B.; Duan, Q.; Wang, H.-G. Free-Standing
    and Flexible Organic Cathode Based on Aromatic Carbonyl Compound/Carbon
    Nanotube Composite for Lithium and Sodium Organic Batteries. J. Colloid Interface
    Sci. 2018, 517, 72–79.
    (74) Deng, W.; Shen, Y.; Qian, J.; Cao, Y.; Yang, H. A Perylene Diimide Crystal with
    High Capacity and Stable Cyclability for Na-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 21095–21099.
    (75) Sun, T.; Feng, X.-L.; Sun, Q.-Q.; Yu, Y.; Yuan, G.-B.; Xiong, Q.; Liu, D.-P.; Zhang, X.-B.; Zhang, Y. Solvation Effect on the Improved Sodium Storage Performance of N-Heteropentacenequinone for Sodium-Ion Batteries. Angew. Chem., Int. Ed. 2021, 60, 26806–26812.
    (76) Chen, X.; Wu, Y.; Huang, Z.; Yang, X.; Li, W.; Yu, L. C.; Zeng, R.; Luo, Y.; Chou,
    S.-L. C10H4O2S2/Graphene Composite as a Cathode Material for Sodium-Ion Batteries. J. Mater. Chem. A 2016, 4, 18409–18415.
    (77) Guo, C.; Zhang, K.; Zhao, Q.; Pei, L.; Chen, J. High-Performance Sodium Batteries with the 9,10-Anthraquinone/CMK-3 Cathode and an Ether-based Electrolyte. Chem. Commun. 2015, 51, 10244–10247.
    (78) Hu, J.; Liang, R.; Tang, W.; He, H.; Fan, C. Synthesis of Polyanionic
    Anthraquinones as New Insoluble Organic Cathodes for Organic Na-Ion Batteries. Int. J. Hydrog. Energy 2020, 45, 24573–24581.
    (79) Luo, C.; Xu, G. L.; Ji, X.; Hou, S.; Chen, L.; Wang, F.; Jiang, J.; Chen, Z.; Ren, Y.;
    Amine, K. Reversible Redox Chemistry of Azo Compounds for Sodium‐Ion Batteries. Angew. Chem., Int. Ed. 2018, 57, 2879–2883.
    (80) Zheng, S.; Hu, J.; Huang, W. An Inorganic–Organic Nanocomposite Calix[4]
    Quinone (C4Q)/CMK-3 as a Cathode Material for High-Capacity Sodium Batteries.
    Inorg. Chem. Front. 2017, 4, 1806–1812.
    (81) Yan, B.; Wang, L.; Huang, W.; Zheng, S.; Hu, P.; Du, Y. High-Capacity Organic
    Sodium Ion Batteries Using a Sustainable C4Q/CMK-3/SWCNT Electrode. Inorg.
    Chem. Front. 2019, 6, 1977–1985.
    (82) Zhou, W.; Zhang, X.; Zhang, W.; Huang, W.; Yan, B.; Li, H.; Yu, S. Combination
    of High Performance Organic Cathode Calix[4]Quinone and Practical Biocarbon in
    Sodium-Ion Batteries. Org. Electron. 2020, 82, 105702.
    (83) Xiong, W.; Huang, W.; Zhang, M.; Hu, P.; Cui, H.; Zhang, Q. Pillar[5]Quinone–
    Carbon Nanocomposites as High-capacity Cathodes for Sodium-Ion Batteries. Chem. Mater. 2019, 31, 8069–8075.
    (84) Banda, H.; Damien, D.; Nagarajan, K.; Raj, A.; Hariharan, M.; Shaijumon, M. M.
    Twisted Perylene Diimides with Tunable Redox Properties for Organic Sodium‐Ion
    Batteries. Adv. Energy Mater. 2017, 7, 1701316.
    (85) Hu, Y.; Yu, Q.; Tang, W.; Cheng, M.; Wang, X.; Liu, S.; Gao, J.; Wang, M.; Xiong,
    M.; Hu, J. Ultra-Stable, Ultra-Long-Lifespan and Ultra-High-Rate Na-Ion Batteries Using Small-molecule Organic Cathodes. Energy Storage Mater. 2021, 41, 738–747.
    (86) Ma, C.; Wang, L.-Y.; Shu, M.-H.; Hou, C.-C.; Wang, K.-X.; Chen, J.-S. Thiophene
    Derivatives as Electrode Materials for High-performance Sodium-Ion Batteries. J.
    Mater. Chem. A 2021, 9, 11530–11536.
    (87) Miroshnikov, M.; Kato, K.; Babu, G.; Kumar, N.; Mahankali, K.; Hohenstein, E.;
    Wang, H.; Satapathy, S.; Divya, K. P.; Asare, H. Nature-Derived Sodium-Ion Battery:
    Mechanistic Insights into Na-Ion Coordination within Sustainable Molecular Cathode Materials. ACS Appl. Energy Mater. 2019, 2, 8596–8604.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE