簡易檢索 / 詳目顯示

研究生: 趙敏妏
Chao, Min-Wen
論文名稱: 資料隱藏及基於球諧函數之動作檢索
Steganography and Spherical Harmonic for Motion Retrieval
指導教授: 李同益
Lee, Tong-Yee
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 112
中文關鍵詞: 資料隱藏三維隱寫術多階層嵌入浮水印版權保護動作檢索球諧函數素描界面模型匹配骨架幾何特徵圖型比對
外文關鍵詞: Information hiding, 3D steganography, multi-layered embedding, watermarking, copyright protection, motion retrieval, spherical harmonic function, sketching interface, shape matching, skeleton, geometric features, graph matching
相關次數: 點閱:152下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 資料隱藏在電腦圖學領域中總是吸引大量的研究者的目光,一般來說,資料隱藏因為不同的目的而分成兩大主題,其一是隱寫術,另一個則是浮水印。在本篇論文中,分別對此兩大主題提出最適當的演算法。
    首先是隱寫術,它所強調的是要能在三維模型中攜帶大量的訊息並且不易被察覺,為此,我們提出一個非常高容量和低失真的三維隱寫技術,此方法是基於新型的多層嵌入技術將訊息隱藏於三維多邊形模型的頂點。實驗結果證明,模型的失真率相當地小,而且至少可嵌入7到13層的資料。這種新方法可以提供隱藏的能力遠高於其他方法,同時還能服從低失真和安全的基本要求。
    另一種資料隱藏的模式是所謂的浮水印,它通常是用在版權管理及保護信息上。我們提出一種新的半盲和半可逆的,強大的三維的多邊形模型的浮水印技術。我們利用擴頻方式將浮水印嵌入於三維模型中顯著的特點上。這個技術對於不論旋轉、平移、縮放、雜訊、平滑化、網絡簡化、頂點的重新排列、裁剪、甚至網絡變形都能準確的提出隱藏於其中之浮水印。據我們所知,現有的方法包括盲目的,半盲和非盲檢測方案不能承受的網絡變形這種攻擊。此外,水印模型半盲檢測方案中是可以大部份恢復成原有模型在。實驗結果表明,這種新方法在強健性和隱蔽性比其他方法很多顯著的優勢。
    近幾年來,三維資料檢索系統在圖學領域一直是很熱門的研究方向,所謂的三維資料包括靜態的三維網絡及動態的三維動作資料,如何利用一組很好的描述算子將大量的檢索資料簡化並描述出重要特徵是此研究的重要目標。在本篇論文中,我們提出利用球諧函數(Spherical Harmonic Functions, SHs)來表示大量的三維資料,由於其本身具有相當好的特性,大大地加速檢索速度及增加檢索效能。
    本篇論文中,我們分別針對兩大類不同的資料作配對及檢索,首先是關於人類動作檢索,近幾年來,由於運動擷取(motion capture)不斷地蓬勃發展,人類動作檢索的重要性也日漸提昇,目前大部份的動作檢索技術,在執行之前,皆須花費大量人力從一大型動作資料庫中剪輯出一小段動作資料作為查詢的基本資料,我們的系統除了利用球諧函數改善這部份的效能之外,更開發出一新的素描查詢界面(sketching interface),讓使用者更方便使用檢索系統。而在球諧函數編碼階段,我們提出一新的概念,依照人體不同階層層級作編碼,如此便能同時處理概念性或是精確性的檢索。最後,我們利用這個檢索系統,發展出一個有趣的應用,即利用漫畫式手繪界面建構出一段真人動畫。
    另外一類資料是關於三維模型,目前模型比對的方法僅能處理局部或是全域的匹配,本篇論文中所提出來的方法,可同時處理這兩大類的比對,為了達到這個目的,我們將一給定的模型分成兩個部份,一部分是關於此模型的拓樸結構,另一部份則是幾何特徵,並同時將這兩部份嵌入於一圖形中,最後利用Earth Mover's Distance (EMD)來增加兩圖型之間比對的效率。此篇論文中所用到的拓樸結構是採用骨架資訊,而幾何特徵則是採用球諧函數。最後實驗結果顯示,我們所提出的方法不僅能處理局部及全域的匹配,也能處理受到噪音,平滑,簡化,相似變換,變形等攻擊後的模型匹配。

    Information hiding for a 3D model has captured the imagination of researchers in computer graphic and visualization. This thesis focuses on two different purposes for hiding message. The first one is steganography, it is emphasized to carry a lot of message and be invisible. Therefor, we present a very high-capacity and low-distortion 3D steganography scheme. The steganography approach is based on a novel multi-layered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. This novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.
    Another interest form of Steganography is watermarking. It was usually used to address digital rights management and protect information. We introduce a novel semi-blind-and-semi-reversible robust watermarking scheme for three-dimensional (3D) polygonal models. The proposed approach embeds watermarks in the significant features of 3D models in a spread-spectrum manner. This novel scheme is robust against a wide variety of attacks including rotation, translation, scaling, noise addition, smoothing, mesh simplifications, vertex reordering, cropping, and even pose deformation of meshes. The existing approaches including blind, semi-blind, and non-blind detection schemes cannot withstand the attack of pose editing, which is a very common routine in 3D animation. In addition, the watermarked models can be semi-reversed (i.e., the peak signal-to-noise ratio (PSNR) of the recovered models is greater than 90dB in all experiments) in semi-blind detection scheme. Experimental results show that this novel approach has many significant advantages in terms of robustness and invisibility over other state-of-the-art approaches.
    In recent years, 3D information retrieval system has been a very popular field. How to use a compact and accurate descriptor to retrieve desired information is an important issue. In this thesis, we propose a mathematical notion of spherical harmonics to describe a large number of 3D data. This technology is used in human motion retrieval and shape matching.
    The rapid growth of motion capture data increases the importance of motion retrieval. The majority of the existing motion retrieval approaches are based on a labour intensive step in which the user browses and selects a desired query motion clip from the large motion clips database. In this work, a novel sketching interface for defining the query is presented. This simple approach allows users to define the required motion by sketching several motion strokes over a drawn character, which requires less effort and extends the users' expressiveness. To support the real-time interface, a specialized encoding of the motions and the hand-drawn query is required. Here, we introduce a novel hierarchical encoding scheme based on a set of orthonormal spherical harmonic basis functions (SHs), which provides a compact representation, and avoids the CPU/processing intensive stage of temporal alignment used by previous solutions. Experimental results show that the proposed approach can well retrieve the motions, and is capable of retrieve logically and numerical similar motions, which is superior to previous approaches. The user study shows that the proposed system can be a useful tool to input motion query if the users are familiar with it. Finally, an application of generating a 3D animation from a hand-drawn comics strip is demonstrated.
    Shape matching is a fundamental and important research issue with many applications in computer graphics and visualization. We introduce a underlying graph structure which is composed of topological skeleton and local geometric features of an given 3D model. Matching two graph structures is generally a NP-hard combinatorial optimization problem. To reduce computation cost, two graphs are embedded on a high-dimensional space, and then matched based on an extension of Earth Mover's Distance (EMD). Furthermore, the symmetric components of an articulated object are determined by a voting algorithm with a self-matching strategy to refine the matching correspondences. Experimental results show that the proposed approach is robust, even when the models are under the surface disturbances of noise addition, smoothing, simplification, similarity transformation, and pose deformation. In addition, the proposed approach is capable of handling both global and partial shape matching.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 3D Steganography and Watermarking . . . . . . . . . . . . . . . . . . . . 1 1.2 Human Motion Retrieval and Shape Matching using Spherical Harmonic . . 4 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 3D Steganography and Watermarking . . . . . . . . . . . . . . . . . . . . 7 2.2 Human Motion Retrieval and Shape Matching using Spherical Harmonic . . 10 3 A High Capacity 3D Steganography Algorithm . . . . . . . . . . . . . . . . . . 13 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 The Steganographic System . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Multi-layered Embedding and Extraction Schemes . . . . . . . . . . . . . 14 3.3.1 Single-layered Embedding Scheme . . . . . . . . . . . . . . . . . 15 3.3.2 Multi-layered Embedding Scheme . . . . . . . . . . . . . . . . . . 18 3.3.3 Multi-layered Extraction Scheme . . . . . . . . . . . . . . . . . . 20 3.3.4 Hiding Capacity Analysis . . . . . . . . . . . . . . . . . . . . . . 22 3.3.5 Floating Point Rounding Scheme . . . . . . . . . . . . . . . . . . 23 3.3.6 Interval Number Optimization . . . . . . . . . . . . . . . . . . . . 24 3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 A Novel Semi-blind-and-Semi-reversible Robust Watermarking Scheme for 3D Polygonal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 The System of watermarking . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Watermark Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3.1 Significant Patch Determination . . . . . . . . . . . . . . . . . . . 36 4.3.2 Patch Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.3 Watermark Embedding . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.4 Watermark Extraction . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Human Motion Retrieval from Hand-Drawn Sketch . . . . . . . . . . . . . . . . 53 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 The System of Human Motion Retrieval . . . . . . . . . . . . . . . . . . . 54 5.3 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.4 Motion Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4.2 Encoding motion trajectory with spherical harmonic functions . . . 57 5.5 Sketching Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.6 Indexing and Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.7 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.7.1 Properties with SHs motion encoding . . . . . . . . . . . . . . . . 64 5.7.2 Encoding Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.7.3 Retrieval Evaluation and Applications . . . . . . . . . . . . . . . . 68 6 A Graph-based Shape Matching Scheme for 3D Articulated Objects . . . . . . . 76 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2 Algorithm Overview of Shape Matching . . . . . . . . . . . . . . . . . . . 77 6.3 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.1 Skeleton Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.2 Underlying Graph Structure . . . . . . . . . . . . . . . . . . . . . 79 6.4 Geometry Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.4.1 Spherical Harmonics (SHs) . . . . . . . . . . . . . . . . . . . . . . 80 6.4.2 Surface Patch Encoding Using SH . . . . . . . . . . . . . . . . . . 81 6.5 Graph Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.5.1 Earth Mover’s Distance (EMD) . . . . . . . . . . . . . . . . . . . 83 6.5.2 Graph-space to Euclidean-space Embedding . . . . . . . . . . . . . 84 6.5.3 Dimensionality Expansion and Point Sets Matching . . . . . . . . . 86 6.5.4 Distance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.5.5 Symmetry Determination . . . . . . . . . . . . . . . . . . . . . . . 89 6.6 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . 94 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.1 3D Steganography and Watermarking . . . . . . . . . . . . . . . . . . . . 97 7.2 Human Motion Retrieval and Shape Matching using Spherical Harmonic . . 98 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    [1] http://en.wikipedia.org/wiki/Steganography.
    [2] CMU 2003. Motion capture database. http://mocap.cs.cmu.edu/.
    [3] P. Alliez, D. Cohen-Steiner, O. Devillers, B. L´evy, and M. Desbrun. Anisotropic polygonal remeshing. ACM Transactions on Graphics (SIGGRAPH ’03), 22:485–493, July 2003.
    [4] M. Ashourian, R. Enteshari, and J. Jeon. Digital watermarking of three-dimensional polygonal models in the spherical coordinate system. In CGI ’04: Proceedings of the Computer Graphics International, pages 590–593, 2004.
    [5] J. Assa, D. Cohen-Or, I.-C. Yeh, and T.-Y. Lee. Motion overview of human actions. ACM Transactions on Graphics (SIGGRAPH Asia 2008), 27:115:1–115:10, December 2008.
    [6] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee. Skeleton extraction by mesh contraction. ACM Transactions on Graphics (SIGGRAPH ’08), 27:44:1–44:10, August 2008.
    [7] O. K.-C. Au, C.-L. Tai, D. Cohen-Or, Y. Zheng, and H. Fu. Electors voting for fast automatic shape correspondence. Computer Graphics Forum, 29(2):645–654, 2010.
    [8] G. Baciu and B. K. C. Iu. Motion retargeting in the presence of topological variations. Journal of Visualization and Computer Animation, 17(1):41–57, 2006.
    [9] X. Bai and L. J. Latecki. Path similarity skeleton graph matching. IEEE Transaction on Pattern Analysis and Machine Intelligence, 30:1282–1292, 2008.
    [10] J. Barbiˇc, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hodgins, and N. S. Pollard. Segmenting motion capture data into distinct behaviors. GI ’04: Proceedings of Graphics Interface, pages 185–194, 2004.
    [11] O. Benedens. Geometry-based watermarking of 3d models. IEEE Computer Graphics and Applications, 19(1):46–55, Jan./Feb. 1999.
    [12] O. Benedens. Robust watermarking and affine registration of 3d meshes. In IH ’02: Revised Papers from the 5th International Workshop on Information Hiding, pages 177–195, 2003.
    [13] O. Benedens and C. Busch. Towards blind detection of robust watermarks in polygonal models. 19(3):199–208, 2000.
    [14] C. Brechb¨uhler, G. Gerig, and O. K¨ubler. Parametrization of closed surfaces for 3-d shape description. Computer Vision and Image Understanding, 61(2):154–170, 1995.
    [15] F. Cayre, O. Devillers, F. Schmitt, and H. Maˆıtre. Watermarking 3d triangle meshes for authentication and integrity. INRIA Research Report, pages 939–949, 2004.
    [16] F. Cayre and B. Macq. Data hiding on 3-d triangle meshes. IEEE Transactions on Signal Processing, 51(5223):939–949, Apr. 2003.
    [17] W. Chang and M. Zwicker. Automatic registration for articulated shape. Computer Graphics Forum, 27(5):1459–1468, 2008.
    [18] M.-W. Chao, C.-h. Lin, C.-W. Yu, and T.-Y. Lee. A high capacity 3d steganography algorithm. IEEE Transactions on Visualization and Computer Graphics, 15(2):274–284, 2009.
    [19] B. Chen and G.W.Wornell. Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Transactions on Information Theory, 47(4):1423–1443, 2001.
    [20] Y.-M. Cheng and C.-M.Wang. A high-capacity steganographic approach for 3d polygonal meshes. The Visual Computer, 22(9):845–855, 2006.
    [21] C.-Y. Chiu, S.-P. Chao, M.-Y.Wu, S.-N. Yang, and H.-C. Lin. Content-based retrieval for human motion data. Journal of Visual Communication and Image Representation, 15(3):446–466, 2004.
    [22] C.-M. Chou and D.-C. Tseng. A public fragile watermarking scheme for 3d model authentication. Computer-Aided Design, 38(11):1154–1165, 2006.
    [23] N. D. Cornea, M. F. Demirci, D. Silver, A. Shokoufandeh, S. J. Dickinson, and P. B. Kantor. 3d object retrieval using many-to-many matching of curve skeletons. International Conference on Shape Modeling and Applications, pages 368–373, 2005.
    [24] D. Cotting, T. Weyrich, M. Pauly, and M. Gross. Robust watermarking of pointsampled geometry. In SMI ’04: Proceedings of the Shape Modeling International 2004, pages 233–242, 2004.
    [25] I. Cox, M. L. Miller, and J. A. Bloom. Digital watermarking. 2002.
    [26] I. J. Cox, S. Member, J. Kilian, F. T. Leighton, and T. Shamoon. Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, 6:1673–1687, 1997.
    [27] G. Cybenko, A. Bhasin, and K. D. Cohen. Pattern recognition of 3d cad objects: Towards an electronic yellow pages of mechanical parts. International Journal of Intelligent Engineering Systems, 95:1–15, 1996.
    [28] A. D. Error types. In: Perspectives on Science, pages 38–58, 2001.
    [29] J. Davis, M. Agrawala, E. Chuang, Z. Popovi´c, and D. Salesin. A sketching interface for articulated figure animation. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 320–328, 2003.
    [30] J. de Souza’s. An illustrated review of how motion is represented in static instructional graphics. STC’s 55th Conference, pages 1–4, 2008.
    [31] B. Demuth, T. R¨oder, M. M¨uller, and B. Eberhardt. An information retrieval system for motion capture data. Proc. 28th European Conference on Information Retrieval, pages 373–384, 2006.
    [32] Z. Deng, Q. Gu, and Q. Li. Perceptually consistent example-based human motion retrieval. I3D ’09: Proceedings of the 2009 symposium on Interactive 3D graphics and games, pages 191–198, 2009.
    [33] V. R. Doncel, N. Nikolaidis, and I. Pitas. An optimal detector structure for the fourier descriptors domain watermarking of 2d vector graphics. IEEE Transactions on Visualization and Computer Graphics, 13:851–863, 2007.
    [34] W. Eisner. Comics and Sequential Art, 2008.
    [35] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. Advances in multiresolution for geometric modelling, pages 157–186, 2005.
    [36] K. Forbes and F. E. An efficient search algorithm for motion data using weighted pca. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 67–76, 2005.
    [37] J. Fridrich. Applications of data hiding in digital images. In ISSPA’99: Proceedings of the Fifth International Symposium on Signal Processing and Its Applications, 1999, volume 1, page 9, 1999.
    [38] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and D. Jacobs. A search engine for 3d models. ACM Transactions on Graphics, 22:83–105, January 2003.
    [39] R. Gal and D. Cohen-Or. Salient geometric features for partial shape matching and similarity. ACM Transaction on Graphics, 25(1):130–150, 2006.
    [40] Y. Gao, L. Ma, Y. Chen, and J. Liu. Content-based human motion retrieval with automatic transition. Computer Graphics International, pages 360–371, 2006.
    [41] Y. Gao, L. Ma, J. Liu, X. Wu, and Z. Chen. An efficient algorithm for content-based human motion retrieval. Lecture Notes in Computer Science, pages 970–979, 2006.
    [42] E. Garcia and J.-L. Dugelay. Texture-based watermarking of 3d video objects. IEEE Transactions on circuits and systems for video technology, 13(8):853–866, 2003.
    [43] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pages 209–216, 1997.
    [44] S. K. H. Date and T. Kishinami. Digital watermarking for 3d polygons model using multiresolutional wavelet decomposition. Proc. Sixth IFIP WG 5.2 GEO-6, pages 296–307, Dec. 1998.
    [45] N. C. H. Song and J. Kim. Robust watermarking of 3d mesh models. Proc. IEEE Int’l Workshop Multimedia Signal Processing (MMSP 2002), pages 332–335, Dec. 2002.
    [46] R. Heck and M. Gleicher. Parametric motion graphs. I3D ’07: Proceedings of the 2007 symposium on Interactive 3D graphics and games, pages 129–136, 2007.
    [47] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully automatic similarity estimation of 3d shapes. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 203–212, 2001.
    [48] E. S. L. Ho and T. Komura. Indexing and retrieving motions of characters in close contact. IEEE Transactions on Computer Graphics and Visualization, pages 481–492, 2009.
    [49] H. Hoppe. Progressive meshes. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages 99–108, 1996.
    [50] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a sketching interface for 3d freeform design. In SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pages 409–416, 1999.
    [51] V. Jain and H. Zhang. A spectral approach to shape-based retrieval of articulated 3d models. Computer-Aided Design, 39:398–407, 2007.
    [52] A. Kalivas, A. Tefas, and I. Pitas. Watermarking of 3d models using principal component analysis. In ICME ’03: Proceedings of the 2003 International Conference on Multimedia and Expo, pages 637–640, 2003.
    [53] S. KANAI, H. DATE, T. KISHINAMI, and S. K. H. Date. Digital watermarking for 3d polygons using multiresolution wavelet decomposition. In Proc. Sixth IFIP WG 5.2 GEO-6, pages 296–307, 1998.
    [54] O. A. Karpenko and J. F. Hughes. Smoothsketch: 3d free-form shapes from complex sketches. ACM Transactions on Graphics (SIGGRAPH ’06), 25:589–598, July 2006.
    [55] S. Katzenbeisser and F. A. Petitcolas, editors. Information Hiding Techniques for Steganography and Digital Watermarking. 2000.
    [56] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic representation of 3d shape descriptors. In SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 156–164, 2003.
    [57] E. Keogh. Exact indexing of dynamic time warping. VLDB ’02: Proceedings of the 28th international conference on Very Large Data Bases, pages 406–417, 2002.
    [58] E. Keogh, T. Palpanas, V. B. Zordan, D. Gunopulos, and M. Cardle. Indexing large human-motion databases. VLDB ’04: Proceedings of the 30th international conference on Very large data bases, pages 780–791, 2004.
    [59] L. Kovar and M. Gleicher. Flexible automatic motion blending with registration curves. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 214–224, 2003.
    [60] L. Kovar and M. Gleicher. Automated extraction and parameterization of motions in large data sets. ACM Transactions on Graphics (SIGGRAPH ’04), 23:559–568, August 2004.
    [61] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. ACM Transactions on Graphics (SIGGRAPH ’02), 21:473–482, July 2002.
    [62] J.-Y. Kwon and I.-K. Lee. Determination of camera parameters for character motions using motion area. The Visual Computer, 24(7):475–483, 2008.
    [63] C. B. L. Marvel and J. Retter. Spread spectrum image steganography. IEEE Image Processing, pages 1075–1083, Aug. 1999.
    [64] J. Lee, J. K. Hodgins, J. Chai, N. S. Pollard, and P. S. A. Reitsma. Interactive control of avatars animated with human motion data. ACM Transactions on Graphics (SIGGRAPH ’02), 21(3):491–500, 2002.
    [65] J. J. Lee, N. I. Cho, and S. U. Lee. Watermarking algorithms for 3d nurbs graphic data. EURASIP Journal on Applied Signal Processing, 2004:2142–2152, 2004.
    [66] S.-H. Lee and K.-R. Kwon. Mesh watermarking based projection onto two convex sets. In: Multimedia Systems, 13:323–330, 2008.
    [67] T.-Y. Lee, Y.-C. Lin, L. Lin, and Y.-N. Sun. Fast feature-based metamorphosis and operator design. Computer Graphics Forum, 17(3):15–22, 1998.
    [68] T.-Y. Lee, C.-Y. Yao, H.-K. Chu, M.-J. Tai, and C.-C. Chen. Generating genus-nto-m mesh morphing using spherical parameterization: Research articles. Computer Animation and Virtual Worlds, 17:433–443, July 2006.
    [69] Q. L. Li, W. D. Geng, T. Yu, X. J. Shen, N. Lau, and G. Yu. Motionmaster: authoring and choreographing kung-fu motions by sketch drawings. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 233–241, 2006.
    [70] Y. Li, T.Wang, and H.-Y. Shum. Motion texture: a two-level statistical model for character motion synthesis. ACM Transactions on Graphics (SIGGRAPH ’02), 21:465–472, July 2002.
    [71] H.-Y. S. Lin, H.-Y. M. Liao, C.-S. Lu, and J.-C. Lin. Fragile watermarking for authenticating 3d polygonal meshes. IEEE Transactions on Multimedia, 7(6):997–1006, Dec. 2005.
    [72] Y. Lin. Efficient human motion retrieval in large databases. GRAPHITE ’06: Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia, pages 31–37, 2006.
    [73] F. Liu, Y. Zhuang, F. Wu, and Y. Pan. 3d motion retrieval with motion index tree. Computer Vision and Image Understanding, 92(2–3):265–284, 2003.
    [74] J. Matousek. On embedding trees into uniformly convex banach spaces. Israel Journal of Mathematics, pages 221–237, 1999.
    [75] M. Meyer, M. Desbrun, P. Schr¨oder, and A. Barr. Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and mathematics, 3(7):34–57, 2002.
    [76] M. M¨uller and T. R¨oder. Motion templates for automatic classification and retrieval of motion capture data. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 137–146, 2006.
    [77] M. M¨uller, T. R¨oder, and M. Clausen. Efficient content-based retrieval of motion capture data. ACM Transactions on Graphics (SIGGRAPH ’05), 24:677–685, July 2005.
    [78] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Fibermesh: designing freeform surfaces with 3d curves. ACM Transactions on Graphics (SIGGRAPH ’07), 26, July 2007.
    [79] Y.-q. Ni, B. Liu, and H.-b. Zhang. A blind watermarking of 3d triangular meshes using geometry image. In CGIV ’07: Proceedings of the Computer Graphics, Imaging and Visualizationon, pages 335–340, 2007.
    [80] R. Ohbuchi, H. Masuada, and M. Aono. Watermarking three-dimensional polygonal models through geometric and topological modifications. IEEE Journal on Special Areas in CommunicationsIEEE Journal on Special Areas in Communications,
    16(4):551–560, 1998.
    [81] R. Ohbuchi, H. Masuda, and M. Aono. Watermaking three-dimensional polygonal models. In MULTIMEDIA ’97: Proceedings of the fifth ACM international conference on Multimedia, pages 261–272, 1997.
    [82] R. Ohbuchi, A. Mukaiyama, and S. Takahashi. A frequency-domain approach to watermarking 3d shapes. Computer Graphics Forum, 21(3):373–382, 2002.
    [83] R. Ohbuchi, S. Takahashi, T. Miyazawa, and A. Mukaiyama. Watermarking 3d polygonal meshes in the mesh spectral domain. In GRIN’01: Graphics interface 2001, pages 9–17, 2001.
    [84] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Matching 3d models with shape distributions. International Conference on Shape Modeling and Applications, pages 154–166, 2001.
    [85] F. Perez-Gonzalez and F. Balado. Quantized projection data hiding. IEEE Image Processing, 2:889–892, Sep. 2002.
    [86] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information hiding – a survey. Proceedings of the IEEE, 87(7):1062–1078, Jul. 1999.
    [87] C. I. Podilchuk and E. J. Delp. Digital watermarking: Algorithms and applications. IEEE Signal Processing Magazine, 18(4):33–46, 07 2001.
    [88] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T. Funkhouser. A planarreflective symmetry transform for 3d shapes. ACM Transactions on Graphics (SIGGRAPH ’06), 25:549–559, July 2006.
    [89] M. Poirier and E. Paquette. Rig retargeting for 3d animation. Graphics Interface 2009 Conference Proceedings, pages 103–110, 2009.
    [90] E. Praun, H. Hoppe, and A. Finkelstein. Robust mesh watermarking. In SIGGRAPH ’99: Proceedings of the 26rd annual conference on Computer graphics and interactive techniques, pages 49–56, 1999.
    [91] K. Pullen and C. Bregler. Motion capture assisted animation: texturing and synthesis. ACM Transactions on Graphics (SIGGRAPH ’02), 21:501–508, July 2002.
    [92] Y. qiang Ni, B. Liu, and H. bin Zhang. Affine invariant watermarks for 3d polygonal and nurbs based models. Proc. Third Int’l Workshop Information Security (ISW 2000), pages 329–340, Dec. 2000.
    [93] Y. qiang Ni, B. Liu, and H. bin Zhang. Watermarking 3d models. IEEE Image Processing, pages 661–664, Sept. 2002.
    [94] T. M. R. Ohbuchi, S. Takahashi and A. Mukaiyama. Watermarking 3-d polygonal meshes in the mesh spectral domain. Proc. Computer Graphics Interface, pages 9– 17, June 2001.
    [95] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.
    [96] Y. Sakamoto, S. Kuriyama, and T. Kaneko. Motion map: image-based retrieval and segmentation of motion data. In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 259–266, 2004.
    [97] D. Saupe and D. V. Vrani´c. 3D model retrieval with spherical harmonics and moments. DAGM-Symposium on Pattern Recognition, pages 392–397, 2001.
    [98] L. Shen and M. K. Chung. Large-scale modeling of parametric surfaces using spherical harmonics. 3DPVT ’06: Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission, pages 294–301, 2006.
    [99] H. S. Song and N. I. Cho. Robust watermarking of 3d polygonal meshes. IEICE transactions on information and systems, E91-D:1512–1521, May 2008.
    [100] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. R¨ossl, and H.-P. Seidel. Laplacian surface editing. In SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 175–184, 2004.
    [101] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape matching and retrieval. International Conference on Shape Modeling and Applications, pages 130–139, 2003.
    [102] G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral approximation. In ICCV ’95: Proceedings of the Fifth International Conference on Computer Vision, page 902, 1995.
    [103] G. Taubin. A signal processing approach to fair surface design. In SIGGRAPH ’95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages 351–358, 1995.
    [104] M. Thorne, D. Burke, and M. van de Panne. Motion doodles: an interface for sketching character motion. ACM Transactions on Graphics (SIGGRAPH ’04), 23:424–431, August 2004.
    [105] Y.-Y. Tsai, W.-C. Lin, K.-B. Cheng, J. Lee, and T.-Y. Lee. Real-time physics-based 3d biped character animation using an inverted pendulum model. IEEE Transactions on Visualization and Computer Graphics, 16(2):325–337, 2010.
    [106] F. Uccheddu, M. Corsini, and M. Barni. Wavelet-based blind watermarking of 3d models. In MM & Sec ’04: Proceedings of the 2004 workshop on Multimedia and security, pages 143–154, 2004.
    [107] C.-M.Wang and Y.-M. Cheng. An efficient information hiding algorithm for polygon model. Computer Graphics Forum, 24(3):591–600, 2005.
    [108] Y.-S. Wang and T.-Y. Lee. Curve-skeleton extraction using iterative least squares optimization. IEEE Transactions on Visualization and Computer Graphics, 14(4):926–936, 2008.
    [109] H.-T.Wu and Y. ming Cheung. A reversible data hiding approach to mesh authentication. In WI ’05: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pages 774–777, 2005.
    [110] C.-Y. Yao and T.-Y. Lee. Adaptive geometry image. IEEE Transactions on Visualization and Computer Graphics, 14(4):948–960, 2008.
    [111] B.-L. Yeo and M. M. Yeung. Watermarking 3d objects for verification. IEEE Computer Graphics and Applications, 19(1):36–45, 1999.
    [112] K. Yin, Z. Pan, J. Shi, and D. Zhang. Robust mesh watermarking based on multiresolution processing. Computers & Graphics, 25(3):409–420, 2001.
    [113] S. Zafeiriou, A. Tefas, and I. Pitas. Blind robust watermarking schemes for copyright protection of 3d mesh objects. IEEE Transactions on Visualization and Computer Graphics, 11(5):596–607, 2005.
    [114] G. Zou, J. Hua, M. Dong, and H. Qin. Surface matching with salient keypoints in geodesic scale space. Journal of Visualization and Computer Animation, 19:399–410, 2008.

    下載圖示 校內:2013-12-22公開
    校外:2013-12-22公開
    QR CODE