| 研究生: |
許雲翔 Syu, Yun-Siang |
|---|---|
| 論文名稱: |
壓電材料中空圓柱層殼
靜態問題解析 Exact solutions for hybrid piezoelectric hollow cylinders |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 漸近展開 、解析解 、圓柱 、壓電材料 、軸對稱分析 、壓電學 |
| 外文關鍵詞: | Axisymmetric analysis, Cylinders, Piezoelectric material, Piezoelectricity, Exact solutions, Asymptotic expansion |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文根據三維電彈性力學理論,藉由微擾法,進行異向性含壓電材料之中空圓柱層殼受力場或電場作用下之靜態分析。首先,透過圓柱座標系將三維電彈性力學之22條基本方程式重新整理,消去曲面應力場量,並以位移場、橫向應力、電位移及電位等8個場量為主要變數,化簡成8條微分方程式;再藉由適當的無因次化處理,使用漸近展開法,將各場量展開成與一微小參數相關之冪級數型式,則原三維基本方程式可分離成不同階數、層次分明且具遞迴特性之微分方程組。循序將各階方程式沿厚度方向行連續積分,可導出由低階至高階遞迴形式之二維控制方程式。其中,古典殼理論即為此近似理論之首階近似解,因此高階修正場量可依低階場量解,有系統地逐階循環修正,求得收斂之精確解。文中推得之含壓電材料中空圓柱層殼之三維解析理論,應用於兩端為簡支承且受正弦型式分佈外力場或電場作用下之數值範例,其數值驗證結果顯示,本三維漸近理論解不僅精確而且收斂快速。
Based on the three-dimensional (3D) piezoelectricity, an asymptotic formulation for the static analysis of multilayered hybrid piezoelectric hollow cylinders (i.e., laminated composite cylinders bonded with piezoelectric layers on the outer surfaces) is developed. The twenty-two basic equations in a cylindrical coordinates system are firstly reduced to eight differential equations in terms of eight primary variables of elastic and electric fields. After the mathematical derivation of nondimensionalization, asymptotic expansion and successive integration, we obtained recurrent sets of governing equations for various order problems. The differential operators of the governing equations for each order problem remain the same and are merely identical to those of classical shell theory (CST). In view of the recurrent property, the present asymptotic solutions can be obtained in a hierarchic manner and asymptotically approach the 3D piezoelectricity solutions. Exact solutions for benchmark problems of single-layer and multilayered hybrid piezoelectric hollow cylinders are presented using the present asymptotic formulation.
1. Mason, W.P.: Piezoelectricity, its history and applications. J. Acoust. Soc. Am. 70, 1561_1566 (1981).
2. Rao, S.S., Sunar, M.: Piezoelectricity and its use in disturbance sensing and control of flexible structures: A survey. Appl. Mech. Rev. 47, 113_123 (1994).
3. Saravanos, D.A., Heyliger, P.R., Hopkins, D.A.: Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int. J. Solids Struct. 34, 359_378 (1997).
4. Heyliger, P.: Exact solutions for rectangular bidirectional composites and sandwich plates. J. Appl. Mech. 64, 299-306 (1997).
5. Pagano, N.J.: Exact solutions for rectangular bidirectional composites and sandwish plates. J. Compos. Mater. 4, 20_34 (1970).
6. Chen, C.Q., Shen, Y.P.: Piezothermoelasticity analysis for a circular cylindrical shell under the state of axisymmetric deformation. Int. J. Eng. Sci. 34, 1585_1600 (1996).
7. Cheng, Z.Q., Lim, C.W., Kitipornchai, S.: Three-dimensional exact solution for inhomogeneous and laminated piezoelectric plates. Int. J. Eng. Sci. 37, 1425_1439 (1999).
8. Chen, C.Q., Shen, Y.P., Wang, X.M.: Exact solution of orthotropic cylindrical shell with piezoelectric layers under cylindrical bending. Int. J. Solids Struct. 33, 4481_4494 (1996).
9. Chen, C., Shen, Y., Liang, X.: Three dimensional analysis of piezoelectric circular cylindrical shell of finite length. Acta Mech. 134, 235_249 (1999).
10. Kapuria, S., Sengupta, S., Dumir, P.C.: Three-dimensional solution for a hybrid cylindrical shell under axisymmetric thermoelectric load. Arch. Appl. Mech. 67, 320_330 (1997).
11. Heyliger, P.: A note on the static behavior of simply-supported laminated piezoelectric cylinders. Int. J. Solids Struct. 34, 3781_3794 (1997).
12. Kapuria, S., Sengupta, S., Dumir, P.C.: Assessment of shell theories for hybrid piezoelectric cylindrical shell under electromechanical load. Int. J. Mech. Sci. 40, 461_477 (1998).
13. Gopinathan, S.V., Varadan, V.V., Varadan, V.K.: A review and critique of theories for piezoelectric laminates. Smart Mater. Struct. 9, 24_48 (2000).
14. Chee, C.Y.K., Tong, L., Steven, G.P.: A review on modeling of piezoelectric sensors and actuators incorporated in intelligent structures. J. Intelligent Mater. Syst. Struct. 9, 3_19 (1998).
15. Wu, C.P., Tarn, J.Q., Chi, S.M., An asymptotic theory for dynamic response of doubly curved laminated shells. Int. J. Solids Struct. 33, 3813_3841 (1996).
16. Wu, C.P., Chiu, S.J.: Thermally induced dynamic instability of laminated composite conical shells. Int. J. Solids Struct. 39, 3001_3021 (2002).
17. Wu, C.P., Tsai, Y.H.: Asymptotic DQ solutions of functionally graded annular spherical shells. Euro. J. Mech. A/Solids 23, 283_299 (2004).
18. Wu, C.P., Chi, Y.W.: Three-dimensional nonlinear analysis of laminated cylindrical shells under cylindrical bending. Euro. J. Mech. A/Solids 24, 837_856 (2005).
19. Cheng, Z.Q., Lim, C.W., Kitipornchai, S.:Three-dimensional asymptotic approach to inhomogeneous and laminated piezoelectric plates. Int. J. Solids Struct. 37, 3151_3175 (2000).
20. Vel, S.S., Mewer, R.C., Batra, R.C.: Analytical solution for the cylindrical bending vibration of piezoelectric composite plates. Int. J. Solids Struct. 41, 1625_1643 (2004).
21. Kapuria, S., Dumir, P.C., Sengupta, S.: An exact axisymmetric solution for a simply supported piezoelectric cylindrical shell. Arch. Appl. Mech. 67, 260_273 (1997)