簡易檢索 / 詳目顯示

研究生: 沈沛儒
Shen, Pei-Ju
論文名稱: 企業屬性績效表現與整體顧客滿意度關係之分析
An Analysis of the Relationship between Enterprise Performance and Overall Customer Satisfaction
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 68
中文關鍵詞: 重要性-績效分析影響範圍-績效分析影響非對稱分析模糊理論模糊迴歸
外文關鍵詞: Importance-Performance Analysis(IPA), Impact Range-Performance Analysis(IRPA), Impact Asymmetry Analysis(IAA), Fuzzy theory, Fuzzy regression
相關次數: 點閱:113下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技發展與社會生活形式的改變,組織在面對顧客時,不再僅僅是「交出產品」就可以讓顧客感到百分之百的滿意,而是越來越注重顧客的滿意度,因此組織應藉由了解顧客對產品或服務之主觀感受,進一步探討自身產品或服務屬性之優劣勢,並找出其中最需要關注的屬性,針對這些屬性進行改善的優先排序,設法追求更高的產品及服務品質,增加顧客滿意度,提升自身的競爭力。
    分析屬性績效和整體顧客滿意度的方法有許多種,而較常使用的方法為:重要性–績效分析(Importance-Performance Analysis;IPA),IPA是一種能幫助組織分析自身優劣勢之方法,利用重要性和績效表現兩面向,使組織了解屬性特性,以得知需優先改善之重要屬性,因此受各產業廣泛應用。然而,IPA有其侷限性,第一、IPA僅針對屬性的顯性重要性進行研究,而忽略隱性重要性,也就是屬性績效表現與整體顧客滿意度(Overall Customer Satisfaction;OCS)之間的關係。第二、IPA可能因相對簡化的圖形表達方式,造成組織錯失市場機會。第三、IPA假設績效表現和整體顧客滿意度間為線性關係,未考慮到二者間可能存在不對稱非線性的關係。第四、IPA過去常以單一且明確值的方式呈現屬性資訊,但事實上在面對複雜的決策環境時,資訊常會因為人為主觀想法與認知,而存在不明確的情形,明確值已無法完整表達意見。
    本研究主要針對(1)屬性之隱性重要性、(2)被忽略之存在市場機會的屬性、(3)績效表現與整體顧客滿意度的不對稱非線性關係、(4)屬性資訊之模糊不確定性,四個面向建立研究方法。針對此四個面向,本研究將於不確定環境下,以新對角線結合影響範圍–績效分析(Impact Range-performance Analysis;IRPA)方法,找出關鍵屬性,並另外建立影響非對稱分析(Impact Asymmetry Analysis;IAA)方法與其搭配,以排序關鍵屬性之改善次序,提供決策者更符合現實生活的分析結果,做為組織策略規劃參考。

    Because of the development of science and technology and the changes in sociality, organizations cannot guarantee perfect satisfaction to their customers by simply handing over products. They need to focus more attentions on customer satisfaction. Therefore, organizations should explore the advantages and disadvantages of their product or service attributes to understand customers' subjective feelings about products or services. Organizations need to find out the determinant attributes and improve these attributes in priority. For such an end, they can ensure high-quality products and services, and thereby increase customer satisfaction to enhance their competitiveness.
    Importance-Performance Analysis (IPA) is a method that can help organizations analyze their strengths and weaknesses. There are two aspects in IPA: importance and performance, so that organizations can understand the characteristics of attributes. Organizations can know which attributes are the important ones that need to be improved in the first priority by IPA. Therefore, IPA is widely used in various industries. However, IPA has some limitations. First, IPA only focuses on the direct importance of attributes, while ignoring the derived importance, which describes the relationship between attribute performance and Overall Customer Satisfaction (OCS). Second, IPA may overlook market opportunities due to the use of the relatively simplified graphical representation. Third, IPA assumes a linear relationship between performance and overall customer satisfaction, not considering that the possible asymmetric nonlinear relationship between performance and overall customer satisfaction. Fourth, IPA presents attribute information in the form of crisp values. In fact, the information is often ambiguous due to human subjective thoughts and cognition in a complex decision-making environment. We cannot simply convert opinions into crisp values.
    This study focuses on (1) the derived importance of attributes, (2) the neglected attributes of market opportunities, (3) the asymmetric nonlinear relationship between performance and overall customer satisfaction, and (4) the uncertainty of attribute information. To deal with above four aspects, we add a new angle of diagonal line to Impact Range-Performance Analysis (IRPA) method to find key attributes, which should be improved firstly in an uncertain environment in this study. Then, we establish an Impact Asymmetry Analysis (IAA) to sort the improvement order of key attributes. Therefore, we can provide more realistic information to decision makers, as a reference for strategic planning to the organization.

    摘要 I Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究範圍與假設 4 第四節 研究流程 4 第五節 論文架構 5 第二章 文獻探討 7 第一節 重要性–績效分析 7 一、重要性–績效分析基本介紹 7 二、傳統重要性–績效分析之問題 8 三、對角線重要性–績效分析 10 第二節 影響範圍–績效分析 13 一、懲罰獎勵對比分析 13 二、影響範圍–績效分析 16 第三節 影響非對稱分析 18 第四節 模糊理論與模糊迴歸 21 一、模糊集合理論 22 二、模糊數 22 三、模糊運算 24 四、語意變數 25 五、模糊迴歸 25 第三章 研究方法 28 第一節 研究構想 28 一、研究說明 28 二、研究假設 29 三、方法架構 30 第二節 方法流程 31 一、符號定義 31 二、步驟說明 34 第三節 小結 41 第四章 範例演算 43 第一節 範例說明 43 第二節 範例演算 45 第三節 結果分析與比較 51 一、本研究之結果分析 52 二、與參考文獻之比較 56 第四節 小結 58 第五章 結論與建議 60 第一節 研究成果 60 第二節 未來研究方向 61 參考文獻 62

    【中文部份】
    方祥權. (2015). 應用 IRPA 與 IAA 分析馬公航空站服務品質之研究. 觀光與休閒管理期刊, 3(1), 103-124.

    王奕縈. (2018). 臺中市優化公車服務品質與滿意度研究-應用 IRPA 與 IAA 模式. 臺中市政府107年度市政發展研究論文獎助計畫, 1-89.

    朱純孝. (2018). 直觀模糊環境下之相似度對角線式重要-表現分析法之建立. 科技部補助專題研究計畫, 1-44.

    林鴻銘, & 洪千惠. (2016). 影響範圍續效與非對稱影響服務品質分析法之應用-以某客運公司為例. 品質學報, 23(2), 77-90.

    陳妤庭. (2015). 運用 IPA, IRPA, IAA 與動態 IPA 探討臺北市會議展覽觀光目的地意象. 臺中教育大學永續觀光暨遊憩管理碩士學位論文, 1-119.

    【英文部份】
    Abalo, J., Varela, J., & Manzano, V. (2007). Importance values for Importance–Performance Analysis: A formula for spreading out values derived from preference rankings. Journal of Business Research, 60(2), 115-121.

    Albayrak, T., & Caber, M. (2015). Prioritisation of the hotel attributes according to their influence on satisfaction: A comparison of two techniques. Tourism Management, 46, 43-50.

    Asai, H., Tanaka, S., & Uegima, K. (1982). Linear regression analysis with fuzzy model. IEEE Trans. Systems Man Cybern, 12, 903-907.

    Azzopardi, E., & Nash, R. (2013). A critical evaluation of importance–performance analysis. Tourism Management, 35, 222-233.

    Back, K.-J. (2012). Impact-range performance analysis and asymmetry analysis for improving quality of Korean food attributes. International Journal of Hospitality Management, 31(2), 535-543.

    Back, K.-J., & Lee, C.-K. (2015). Determining the attributes of casino customer satisfaction: Applying impact-range performance and asymmetry analyses. Journal of Travel & Tourism Marketing, 32(6), 747-760.

    Bacon, D. R. (2003). A comparison of approaches to importance-performance analysis. International Journal of Market Research, 45(1), 1-15.

    Bitner, M. J., Booms, B. H., & Tetreault, M. S. (1990). The service encounter: diagnosing favorable and unfavorable incidents. Journal of marketing, 54(1), 71-84.

    Brandt, R.D. (1987), A procedure for identifying value-enhancing service components using customer satisfaction survey data. in Suprenant, C.F. (Ed.), Add Value to Your Service: The Key to Success, AMA, Chicago, IL, pp. 61-4.

    Cadotte, E. R., & Turgeon, N. (1988). Dissatisfiers and satisfiers: suggestions from consumer complaints and compliments. Journal of consumer satisfaction, Dissatisfaction and Complaining Behavior, 1(1), 74-79.

    Cao, J., Hao, Z., Yang, J., Yin, J., & Huang, X. (2020). Prioritizing neighborhood attributes to enhance neighborhood satisfaction: An impact asymmetry analysis. Cities, 105, 102854.

    Chen, J.-K. (2021). A New Approach for Diagonal Line Model of Importance-Performance Analysis: A Case Study of Tourist Satisfaction in China. SAGE Open, 11(1), 2158244021989276.

    Chen, L.H. and H.W. Lu, 2001, An approximate approach for ranking fuzzy numbers
    based on left and right dominance, Computers and Mathematics with Applications 41,1589-1602.

    Chen, L.-H., & Hsueh, C.-C. (2009). Fuzzy regression models using the least-squares method based on the concept of distance. IEEE Transactions on Fuzzy Systems, 17(6), 1259-1272.

    Chen, L.-H., Hsueh, C.-C., & Chang, C.-J. (2013). A two-stage approach for formulating fuzzy regression models. Knowledge-Based Systems, 52, 302-310. doi:10.1016/j.knosys.2013.08.010.

    Chen, L. H., & Hsueh, C. C. (2007). A mathematical programming method for formulating a fuzzy regression model based on distance criterion. IEEE Trans Syst Man Cybern B Cybern, 37(3), 705-712. doi:10.1109/tsmcb.2006.889609.

    Chen, P.-Z., & Liu, W.-Y. (2019). Assessing management performance of the national forest park using impact range-performance analysis and impact-asymmetry analysis. Forest Policy and Economics, 104, 121-138.

    Chen, Z., & Yang, W. (2011). A new multiple attribute group decision making method in intuitionistic fuzzy setting. Applied Mathematical Modelling, 35(9), 4424-4437.

    Chu, C.-H., & Guo, Y.-J. (2015). Developing similarity based IPA under intuitionistic fuzzy sets to assess leisure bikeways. Tourism Management, 47, 47-57.

    Chu, R. (2002). Stated‐importance versus derived‐importance customer satisfaction measurement. Journal of Services Marketing.

    Deng, W.-J., & Pei, W. (2009). Fuzzy neural based importance-performance analysis for determining critical service attributes. Expert Systems with Applications, 36(2), 3774-3784.

    Diamond, P. (1988). Fuzzy least squares. Information Sciences, 46(3), 141-157.

    Dong, W., Cao, X., Wu, X., & Dong, Y. (2019). Examining pedestrian satisfaction in gated and open communities: An integration of gradient boosting decision trees and impact-asymmetry analysis. Landscape and Urban Planning, 185, 246-257.

    Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613-626.

    Fang, D., Xue, Y., Cao, J., & Sun, S. (2021). Exploring satisfaction of choice and captive bus riders: An impact asymmetry analysis. Transportation Research Part D: Transport and Environment, 93, 102798.

    Geng, X., & Chu, X. (2012). A new importance–performance analysis approach for customer satisfaction evaluation supporting PSS design. Expert Systems with Applications, 39(1), 1492-1502.

    Hanson, R. (1992). Determining attribute importance. Quirk’s Marketing Research Review, 6(10), 16-18.

    Hawes, J. M., & Rao, C. (1985). USING IMPORTANCE--PERFORMANCE ANALYSIS TO DEVELOP HEALTH CARE MARKETING STRATEGIES. Journal of Health Care Marketing, 5(4).

    Hu, H.-Y., Lee, Y.-C., Yen, T.-M., & Tsai, C.-H. (2009). Using BPNN and DEMATEL to modify importance–performance analysis model–A study of the computer industry. Expert Systems with Applications, 36(6), 9969-9979.

    Huiskonen, J., & Pirttilä, T. (1998). Sharpening logistics customer service strategy planning by applying Kano's quality element classification. International Journal of Production Economics, 56, 253-260.

    Hung, K.-C. (2015). Paper presented at the Managing Intellectual Capital and Innovation for Sustainable and Inclusive Society: Managing Intellectual Capital and Innovation; Proceedings of the MakeLearn and TIIM Joint International Conference 2015. A Novel Decision Approach: Intuitionistic Fuzzy Importance Performance Analysis.

    Johnston, R., & Silvestro, R. (1990). Paper presented at the The proceedings of the decision science institute Conference, San Diego, CA, November. The Determinants of Service Quality–a Customer-based Approach.

    Ju, Y., Back, K.-J., Choi, Y., & Lee, J.-S. (2019). Exploring Airbnb service quality attributes and their asymmetric effects on customer satisfaction. International Journal of Hospitality Management, 77, 342-352.

    Kano, N. (1984). Attractive quality and must-be quality. Hinshitsu (Quality, The Journal of Japanese Society for Quality Control), 14, 39-48.

    Kao, C., & Chyu, C.-L. (2002). A fuzzy linear regression model with better explanatory power. Fuzzy Sets and Systems, 126(3), 401-409.

    Kim, B., & Bishu, R. R. (1998). Evaluation of fuzzy linear regression models by comparing membership functions. Fuzzy Sets and Systems, 100(1-3), 343-352.

    Ko, R., & Na, W. (1998). Linear regression with random fuzzy variables: extended classical estimates, best linear estimates, least squares estimates. Information Sciences, 109(1-4), 95-118.

    Krištić, J., Vučković, F., Menni, C., Klarić, L., Keser, T., Beceheli, I., . . . Thaqi, K. (2014). Glycans are a novel biomarker of chronological and biological ages. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69(7), 779-789.

    Kwong, C. K., Chen, Y., Chan, K. Y., & Wong, H. (2008). The hybrid fuzzy least-squares regression approach to modeling manufacturing processes. IEEE Transactions on Fuzzy Systems, 16(3), 644-651.

    Lee, J.-S., Back, K.-J., & Chan, E. S. (2015). Quality of work life and job satisfaction among frontline hotel employees: A self-determination and need satisfaction theory approach. International Journal of Contemporary Hospitality Management.

    Martilla, J. A., & James, J. C. (1977). IMPORTANCE-PERFORMANCE ANALYSIS. Journal of Marketing, 41(1), 77-79. doi:10.2307/1250495.

    Matzler, K., Bailom, F., Hinterhuber, H. H., Renzl, B., & Pichler, J. (2004). The asymmetric relationship between attribute-level performance and overall customer satisfaction: a reconsideration of the importance–performance analysis. Industrial Marketing Management, 33(4), 271-277.

    Matzler, K., & Hinterhuber, H. H. (1998). How to make product development projects more successful by integrating Kano's model of customer satisfaction into quality function deployment. Technovation, 18(1), 25-38.

    Matzler, K., & Sauerwein, E. (2002). The factor structure of customer satisfaction: An empirical test of the importance grid and the penalty‐reward‐contrast analysis. International Journal of Service Industry Management.

    Mikulić, J., Dužević, I., & Baković, T. (2015). Exploring drivers of student satisfaction and dissatisfaction: an assessment of impact-asymmetry and impact-range. Total Quality Management & Business Excellence, 26(11-12), 1213-1225.

    Mikulić, J., Krešić, D., & Kožić, I. (2015). Critical factors of the maritime yachting tourism experience: An impact-asymmetry analysis of principal components. Journal of Travel & Tourism Marketing, 32(sup1), S30-S41.

    Mikulić, J., & Prebežac, D. (2008). Prioritizing improvement of service attributes using impact range‐performance analysis and impact‐asymmetry analysis. Managing Service Quality: An International Journal, 18(6), 559-576. doi:10.1108/09604520810920068.

    Mikulić, J., & Prebežac, D. (2011). Evaluating hotel animation programs at Mediterranean sun-and-sea resorts: An impact-asymmetry analysis. Tourism Management, 32(3), 688-696.

    Ming, M., Friedman, M., & Kandel, A. (1997). General fuzzy least squares. Fuzzy Sets and Systems, 88(1), 107-118.

    Oh, H. (2001). Revisiting importance–performance analysis. Tourism Management, 22(6), 617-627.

    Oh, M., Kim, S., Choi, Y., & Pratt, S. (2019). Examination of benefits sought by hiking tourists: a comparison of impact-range performance analysis and impact asymmetry analysis. Asia Pacific Journal of Tourism Research, 24(8), 850-864.

    Peters, G. (1994). Fuzzy linear regression with fuzzy intervals. Fuzzy Sets and Systems, 63(1), 45-55.

    Savic, D. A., & Pedrycz, W. (1991). Evaluation of fuzzy linear regression models. Fuzzy Sets and Systems, 39(1), 51-63.

    Smith, W., Weatherly, K., & Tansik, D. (1992). Paper presented at the the Proceedings of the 2nd International Research Seminar in Service Management, La Londes les Maures, June. A Customer-based Service Quality Study: Use of the Sorting/Cluster Analysis Methodology.

    Stauss, B., & Hentschel, B. (1992). Attribute-based versus incident-based measurement of service quality: results of an empirical study in the German car service industry. Quality Management in Services, 59-78.

    Wong, J. W. C., & Lai, I. K. W. (2018). Evaluating value co-creation activities in exhibitions: An impact-asymmetry analysis. International Journal of Hospitality Management, 72, 118-131.

    Yang, M.-S., & Lin, T.-S. (2002). Fuzzy least-squares linear regression analysis for fuzzy input–output data. Fuzzy Sets and Systems, 126(3), 389-399.

    Ye, B. H., Fu, H., & Law, R. (2016). Use of impact-range performance and asymmetry analyses to improve OTA website quality. Journal of Hospitality and Tourism Management, 26, 9-17.

    Yen, K. K., Ghoshray, S., & Roig, G. (1999). A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets and Systems, 106(2), 167-177.

    Yuan, J., Deng, J., Pierskalla, C., & King, B. (2018). Urban tourism attributes and overall satisfaction: An asymmetric impact-performance analysis. Urban Forestry & Urban Greening, 30, 169-181.

    Zadeh, L. A. (1965). Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh (pp. 394-432): World Scientific.

    Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199-249.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE