簡易檢索 / 詳目顯示

研究生: 劉書豪
Liou, Shu-Hao
論文名稱: 動態序列網路的特性分析
The Characteristic of Network Analysis in Discrete Dynamic Network
指導教授: 陳家駒
Chen, Chia-Chu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 56
中文關鍵詞: 連結數目分佈網路細胞自動機
外文關鍵詞: Network, In-Degree Distribution, Cellular Automata
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們主要分析由細胞自動機(Cellular Automata)產生的網路機制,並且利用程式計算網路的特性,進而改善對於最大連結數目的計算方式。根據結果,我們認為對於最大連結數目的統計並不是區分細胞自動機種類的適當方法。

    We have analyzed the discrete dynamical networks which are generated by Cellular Automata. In this thesis, we demonstrated the networks and modified the analytical method of the maximum in-degree calculation. We suggested that the finite-size scaling of the maximum in-degree is not the appropriate way to classify those rules.

    Abstract i 中文摘要 ii 致謝(Acknowledgement) iii Content vi List of Figures vii List of Tables ix Chapter 1 Introduction: An Overview 1 Chapter 2 Introduction to the Model 4 2.1 Formalism 4 2.2 Network Terminologies 5 2.3 Work From Amer Shreim et al.: Transfer Matrix 7 2.4 Simulation Results From Amer Shreim et al. 9 Chapter 3 Simulation Results: Exhibition and Discussio 11 3.1 The Purpose for Simulating Statistics Properties in Network 11 3.2 Simulation Results 11 3.3 The Reasons for Dissimilar Simulation Results 14 3.4 Simulation Results with Various Rules 17 3.5 Multi-Scale Effect 19 Chapter 4 Transfer Matrix 22 4.1 Modified the Transfer Matrix 22 4.2 Special Discussion for Rule 50 and Rule 77 27 4.3 Special Discussion for Rule 9 32 Chapter 5 Discussions and Conclusions 35 Reference 36 Appendix I The relation between the in-degree and the number of isolated “1” in R4 with L=25. 37 Appendix II Transfer matrix for majority rule, k=2 and r=2. 41 Appendix III Transfer matrix 16x16 for R4, k=2 and r=1. 42 Appendix IV The Preimages of R50 with L=10 and 11 43

    [1] J. von Neuman, Theory of Self-Reproducing Automata (1966).
    [2] Yao-Chen Hung, PhD thesis, National Chung Shan University (2006);
    Hung-Chun Song, Master thesis, National Chung Shan University (2005).
    [3] S. Wolfram , Cellular Automata as Simple Self-Organizing Systems (1982).
    [4] S. Wolfram, Physica (Amsterdam) 10D, 1 (1984).
    [5] GB Ermentrout, L Edelstein-Keshet ,J Theor Biol 160,1(1993).
    [6] B Chopard, M Droz, Cellular automata modeling of physical systems (1998).
    [7] S Wolfram, “Computation theory of cellular automata”, Communications in Mathematical Physics (1984).
    [8] KC Clarke et al, A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area, Environment and Planning B (1997).
    [9] G Narkounskaia, A cellular-automata, slider-block model for earthquakes I: Demonstration of chaotic behaviour for a low-order system, Geophys. J. Int(1992).
    [10] S Wolfram, “Statistical mechanics of cellular automata”, Reviews of Modern Physics (1983).
    [11] Andrew Wuensche, Complexity 4, No.3 (1998).
    [12] M. E. J. Newman, The structure and function of complex networks.
    [13] Gary W. Flake, The computational beauty of nature (2001).
    [14] Amer Shreim et al, Phy. Rev. Lett. 98,198701 (2007).
    [15] S. Wolfram, Twenty Problems in the Theory of CA (1983).
    [16] S. Lise and M. Paczuski, Phys. Rev. E 63, 036111 (2001).

    下載圖示 校內:立即公開
    校外:2009-02-10公開
    QR CODE