簡易檢索 / 詳目顯示

研究生: 吳政桂
Wu, Cheng-Kuei
論文名稱: 解析APLF在膀胱癌中DNA修復機轉的新角色及其抗藥性的影響
The novel role of APLF in DNA repair mechanism and its impact on drug resistance in bladder cancer
指導教授: 蘇文彬
Su, Wen-Pin
廖泓鈞
Liaw, Hungjiun
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 93
中文關鍵詞: APLFPARP1複製叉穩定ICL repair
外文關鍵詞: APLF, PARP1, fork stability, ICL repair
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膀胱癌是全球十大常見癌症之一。以鉑類為基礎的輔助化療是肌層浸潤性膀胱癌(MIBC)患者的第一線治療方法。不幸的是,順鉑抗藥性是影響治療效果的主要障礙。因此,了解順鉑抗藥性的機制非常重要,這可以幫助我們找到對抗癌症的治療策略。基因組不穩定性是癌症的標誌之一。腫瘤發生的主要驅動因素之一是複製壓力引起的DNA雙股斷裂,導致大規模的染色體重組和基因體不穩定性。幾項研究已經揭示,複製叉保護有助於基因組穩定性和化療抗藥性。在本篇研究中,我們發現了APLF在交聯DNA修復和複製叉保護中的新功能。我們發現PARP1活性促進APLF的招募,有助於FANCD2招募至停滯的複製叉,並維持複製叉的穩定性。APLF的缺失或APLF的PBZ區域突變會藉由減少FANCD2招募至停滯複製叉影響複製叉保護,同時對順鉑變得敏感。我們進一步發現,順鉑抗藥物的癌細胞中APLF和同源重組相關基因的表現量高。我們的結果揭示了APLF在促進ICL修復和複製叉保護中的新功能,從而有助於癌細胞的順鉑抗藥性表型。

    Bladder cancer is one of the top ten most common cancer types worldwide. Platinum-based neoadjuvant chemotherapy is a first-line treatment for muscle-invasive bladder cancer (MIBC) patients. Unfortunately, cisplatin resistance is the major obstacle for the efficacy of the treatment. Therefore, understanding the underlying mechanism of cisplatin resistance is important, which can lead us to find therapeutic strategy to combat cancers. Genomic instability is hallmarks of cancers. One of the major driver of tumorigenesis is replication stress-induced DNA double-strand breaks (DSBs), resulting in gross chromosomal rearrangements and genomic instability. Several studies have revealed that replication forks protection contributes to genome stability and chemoresistance. In this study, we identify a novel function of APLF involved in interstrand DNA crosslink (ICL) repair and fork protection. We found that PARP1 activity promotes APLF recruitment, which facilitates FANCD2 recruitment to stalled forks and maintain replication fork stability. The APLF-depletion or mutations in the PBZ-domain of APLF disrupts fork protection by reducing the FANCD2 recruitment to stalled forks, simultaneously being sensitive to cisplatin. We further identified that cisplatin-resistant cancer cells have high levels of APLF and homologous recombination-related gene expression. Our results reveale the novel function of APLF, which facilitates ICL repair and fork protection, thereby contributing to cisplatin-resistant phenotypes of cancer cells.

    中文摘要 I Abstract II Acknowledgment III Content V Abbreviation VII Chapter 1. Introduction 1 1-1. DNA damage response (DDR) in genomic instability 1 1-2. Replication stress in cancer 1 1-3. Mechanisms for stalled replication fork stabilization 2 1-4. Replication fork protection confers chemoresistance 4 1-5. The mechanism of APLF involved in NHEJ 4 1-6. The mechanism of FANCD2 in Fanconi anemia (FA) pathway 6 1-7. Protecting replication forks roles of the FA pathway 8 1-8. Regulation of cisplatin resistance in bladder cancer 8 1-9. Aims of this study 10 Chapter 2. Materials and Methods 11 2-1. Cell culture 11 2-2. RNA interference 11 2-3. Plasmid construction 12 2-4. Preparation of PARP1 and APLF expressing cell lines 13 2-5. In situ analysis of protein interactions at DNA replication forks (SIRF) assay 14 2-6. Isolation of proteins on nascent DNA (iPOND) assay 15 2-7. Western blotting 16 2-8. Co-immunoprecipitation 17 2-9. Sister chromatid exchange (SCE) 17 2-10. Quantitative polymerase chain reaction (qPCR) 18 2-11. BrdU and 7AAD staining for cell cycle analysis by flow cytometry 19 2-12. DNA fiber analysis 19 2-13. Immunofluorescence microscopy 20 2-14. Colony formation assay 21 2-15. Determining the genomic platinum concentration 21 2-16. Subcutaneous mouse model 21 2-17. Histological specimens of mouse tissues 22 2-18. GST pulldown assay 22 2-19. Statistical analysis 23 Chapter 3. Results 24 3-1. APLF is recruited to DNA damage sites via a colocalization with poly-ADP ribose after cisplatin treatment 24 3-2. APLF colocalizes with poly-ADP ribose modifications at DNA damage sites after cisplatin treatment 25 3-3. APLF depletion disrupts the repair of DNA lesions caused by cisplatin 26 3-4. APLF interacts with PARP1, HLTF, FANCD2, and RAD51 27 3-5. PARP1 promotes the recruitment of APLF to sites of DNA damage 29 3-6. APLF and FANCD2 accumulate at sites of stalled replication forks 30 3-7. The PBZ mutant decreases the recruitment of FANCD2 and RAD51 to stalled replication forks 34 3-8. PARP1 activity recruits APLF to stalled forks 35 3-9. APLF enhances fork protection via its PBZ domain 35 3-10. APLF depletion increases sensitivity to cisplatin in a subcutaneous mouse model 37 3-11. Cells resistant to cisplatin exhibit elevated levels of APLF expression 37 Chapter 4. Conclusion 39 Chapter 5. Discussion 39 Figure 45 Reference 75

    1. Groelly, F.J., Fawkes, M., Dagg, R.A., Blackford, A.N. and Tarsounas, M. (2023) Targeting DNA damage response pathways in cancer. Nature Reviews Cancer, 23, 78-94.
    2. Lasolle, H., Elsensohn, M.H., Wierinckx, A., Alix, E., Bonnefille, C., Vasiljevic, A., Cortet, C., Decoudier, B., Sturm, N., Gaillard, S. et al. (2020) Chromosomal instability in the prediction of pituitary neuroendocrine tumors prognosis. Acta Neuropathol Commun, 8, 190.
    3. Tosato, V., Grüning, N.M., Breitenbach, M., Arnak, R., Ralser, M. and Bruschi, C.V. (2012) Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells. Front Oncol, 2, 212.
    4. Huang, R., Liu, X., Li, H., Zhou, Y. and Zhou, P.K. (2020) Integrated analysis of transcriptomic and metabolomic profiling reveal the p53 associated pathways underlying the response to ionizing radiation in HBE cells. Cell Biosci, 10, 56.
    5. Negrini, S., Gorgoulis, V.G. and Halazonetis, T.D. (2010) Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol, 11, 220-228.
    6. Gaillard, H., García-Muse, T. and Aguilera, A. (2015) Replication stress and cancer. Nat Rev Cancer, 15, 276-289.
    7. Wilhelm, T., Said, M. and Naim, V. (2020) DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel), 11.
    8. Gelot, C., Magdalou, I. and Lopez, B.S. (2015) Replication stress in Mammalian cells and its consequences for mitosis. Genes (Basel), 6, 267-298.
    9. Saldivar, J.C., Cortez, D. and Cimprich, K.A. (2017) The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nature Reviews Molecular Cell Biology, 18, 622-636.
    10. Lehmann, A.R., Niimi, A., Ogi, T., Brown, S., Sabbioneda, S., Wing, J.F., Kannouche, P.L. and Green, C.M. (2007) Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst), 6, 891-899.
    11. Vare, D., Groth, P., Carlsson, R., Johansson, F., Erixon, K. and Jenssen, D. (2012) DNA interstrand crosslinks induce a potent replication block followed by formation and repair of double strand breaks in intact mammalian cells. DNA Repair (Amst), 11, 976-985.
    12. Chang, H.H.Y., Pannunzio, N.R., Adachi, N. and Lieber, M.R. (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology, 18, 495-506.
    13. Vítor, A.C., Huertas, P., Legube, G. and de Almeida, S.F. (2020) Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox. Front Mol Biosci, 7, 24.
    14. Dobbelstein, M. and Sørensen, C.S. (2015) Exploiting replicative stress to treat cancer. Nat Rev Drug Discov, 14, 405-423.
    15. Nam, E.A. and Cortez, D. (2011) ATR signalling: more than meeting at the fork. Biochem J, 436, 527-536.
    16. Maréchal, A. and Zou, L. (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol, 5.
    17. Simoneau, A. and Zou, L. (2021) An extending ATR-CHK1 circuitry: the replication stress response and beyond. Curr Opin Genet Dev, 71, 92-98.
    18. Fan, J. and Pavletich, N.P. (2012) Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev, 26, 2337-2347.
    19. Ciccia, A., Bredemeyer, A.L., Sowa, M.E., Terret, M.E., Jallepalli, P.V., Harper, J.W. and Elledge, S.J. (2009) The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev, 23, 2415-2425.
    20. Bétous, R., Mason, A.C., Rambo, R.P., Bansbach, C.E., Badu-Nkansah, A., Sirbu, B.M., Eichman, B.F. and Cortez, D. (2012) SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev, 26, 151-162.
    21. Somyajit, K., Saxena, S., Babu, S., Mishra, A. and Nagaraju, G. (2015) Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res, 43, 9835-9855.
    22. Schlacher, K., Christ, N., Siaud, N., Egashira, A., Wu, H. and Jasin, M. (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell, 145, 529-542.
    23. Schlacher, K., Wu, H. and Jasin, M. (2012) A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell, 22, 106-116.
    24. Neelsen, K.J. and Lopes, M. (2015) Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol, 16, 207-220.
    25. Ralf, C., Hickson, I.D. and Wu, L. (2006) The Bloom's syndrome helicase can promote the regression of a model replication fork. J Biol Chem, 281, 22839-22846.
    26. Machwe, A., Xiao, L., Groden, J. and Orren, D.K. (2006) The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry, 45, 13939-13946.
    27. Ray Chaudhuri, A., Hashimoto, Y., Herrador, R., Neelsen, K.J., Fachinetti, D., Bermejo, R., Cocito, A., Costanzo, V. and Lopes, M. (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol, 19, 417-423.
    28. Berti, M., Ray Chaudhuri, A., Thangavel, S., Gomathinayagam, S., Kenig, S., Vujanovic, M., Odreman, F., Glatter, T., Graziano, S., Mendoza-Maldonado, R. et al. (2013) Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol, 20, 347-354.
    29. Kile, A.C., Chavez, D.A., Bacal, J., Eldirany, S., Korzhnev, D.M., Bezsonova, I., Eichman, B.F. and Cimprich, K.A. (2015) HLTF's Ancient HIRAN Domain Binds 3' DNA Ends to Drive Replication Fork Reversal. Mol Cell, 58, 1090-1100.
    30. Bansbach, C.E., Bétous, R., Lovejoy, C.A., Glick, G.G. and Cortez, D. (2009) The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev, 23, 2405-2414.
    31. Taglialatela, A., Alvarez, S., Leuzzi, G., Sannino, V., Ranjha, L., Huang, J.W., Madubata, C., Anand, R., Levy, B., Rabadan, R. et al. (2017) Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Mol Cell, 68, 414-430.e418.
    32. Ray Chaudhuri, A., Callen, E., Ding, X., Gogola, E., Duarte, A.A., Lee, J.E., Wong, N., Lafarga, V., Calvo, J.A., Panzarino, N.J. et al. (2016) Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature, 535, 382-387.
    33. Rondinelli, B., Gogola, E., Yücel, H., Duarte, A.A., van de Ven, M., van der Sluijs, R., Konstantinopoulos, P.A., Jonkers, J., Ceccaldi, R., Rottenberg, S. et al. (2017) EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat Cell Biol, 19, 1371-1378.
    34. Yazinski, S.A., Comaills, V., Buisson, R., Genois, M.M., Nguyen, H.D., Ho, C.K., Todorova Kwan, T., Morris, R., Lauffer, S., Nussenzweig, A. et al. (2017) ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev, 31, 318-332.
    35. Panzarino, N.J., Krais, J.J., Cong, K., Peng, M., Mosqueda, M., Nayak, S.U., Bond, S.M., Calvo, J.A., Doshi, M.B., Bere, M. et al. (2021) Replication Gaps Underlie BRCA Deficiency and Therapy Response. Cancer Res, 81, 1388-1397.
    36. Cong, K., Peng, M., Kousholt, A.N., Lee, W.T.C., Lee, S., Nayak, S., Krais, J., VanderVere-Carozza, P.S., Pawelczak, K.S., Calvo, J. et al. (2021) Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell, 81, 3227.
    37. Scully, R., Panday, A., Elango, R. and Willis, N.A. (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol, 20, 698-714.
    38. Karanam, K., Kafri, R., Loewer, A. and Lahav, G. (2012) Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell, 47, 320-329.
    39. Lieber, M.R. (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem, 79, 181-211.
    40. Hustedt, N. and Durocher, D. (2016) The control of DNA repair by the cell cycle. Nat Cell Biol, 19, 1-9.
    41. Iles, N., Rulten, S., El-Khamisy, S.F. and Caldecott, K.W. (2007) APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks. Mol Cell Biol, 27, 3793-3803.
    42. Rulten, S.L., Fisher, A.E., Robert, I., Zuma, M.C., Rouleau, M., Ju, L., Poirier, G., Reina-San-Martin, B. and Caldecott, K.W. (2011) PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell, 41, 33-45.
    43. Chen, Q., Kassab, M.A., Dantzer, F. and Yu, X. (2018) PARP2 mediates branched poly ADP-ribosylation in response to DNA damage. Nat Commun, 9, 3233.
    44. Eustermann, S., Brockmann, C., Mehrotra, P.V., Yang, J.C., Loakes, D., West, S.C., Ahel, I. and Neuhaus, D. (2010) Solution structures of the two PBZ domains from human APLF and their interaction with poly(ADP-ribose). Nat Struct Mol Biol, 17, 241-243.
    45. Shirodkar, P., Fenton, A.L., Meng, L. and Koch, C.A. (2013) Identification and functional characterization of a Ku-binding motif in aprataxin polynucleotide kinase/phosphatase-like factor (APLF). J Biol Chem, 288, 19604-19613.
    46. Clements, P.M., Breslin, C., Deeks, E.D., Byrd, P.J., Ju, L., Bieganowski, P., Brenner, C., Moreira, M.C., Taylor, A.M. and Caldecott, K.W. (2004) The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. DNA Repair (Amst), 3, 1493-1502.
    47. Goodarzi, A.A., Yu, Y., Riballo, E., Douglas, P., Walker, S.A., Ye, R., Härer, C., Marchetti, C., Morrice, N., Jeggo, P.A. et al. (2006) DNA-PK autophosphorylation facilitates Artemis endonuclease activity. Embo j, 25, 3880-3889.
    48. Takahashi, T., Tada, M., Igarashi, S., Koyama, A., Date, H., Yokoseki, A., Shiga, A., Yoshida, Y., Tsuji, S., Nishizawa, M. et al. (2007) Aprataxin, causative gene product for EAOH/AOA1, repairs DNA single-strand breaks with damaged 3'-phosphate and 3'-phosphoglycolate ends. Nucleic Acids Res, 35, 3797-3809.
    49. Kanno, S., Kuzuoka, H., Sasao, S., Hong, Z., Lan, L., Nakajima, S. and Yasui, A. (2007) A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses. Embo j, 26, 2094-2103.
    50. Ciccia, A., Ling, C., Coulthard, R., Yan, Z., Xue, Y., Meetei, A.R., Laghmani el, H., Joenje, H., McDonald, N., de Winter, J.P. et al. (2007) Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell, 25, 331-343.
    51. Smogorzewska, A., Matsuoka, S., Vinciguerra, P., McDonald, E.R., 3rd, Hurov, K.E., Luo, J., Ballif, B.A., Gygi, S.P., Hofmann, K., D'Andrea, A.D. et al. (2007) Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell, 129, 289-301.
    52. Hira, A., Yoshida, K., Sato, K., Okuno, Y., Shiraishi, Y., Chiba, K., Tanaka, H., Miyano, S., Shimamoto, A., Tahara, H. et al. (2015) Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Am J Hum Genet, 96, 1001-1007.
    53. Miles, J.A., Frost, M.G., Carroll, E., Rowe, M.L., Howard, M.J., Sidhu, A., Chaugule, V.K., Alpi, A.F. and Walden, H. (2015) The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL. J Biol Chem, 290, 20995-21006.
    54. Rickman, K.A., Lach, F.P., Abhyankar, A., Donovan, F.X., Sanborn, E.M., Kennedy, J.A., Sougnez, C., Gabriel, S.B., Elemento, O., Chandrasekharappa, S.C. et al. (2015) Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia. Cell Rep, 12, 35-41.
    55. Smogorzewska, A., Desetty, R., Saito, T.T., Schlabach, M., Lach, F.P., Sowa, M.E., Clark, A.B., Kunkel, T.A., Harper, J.W., Colaiacovo, M.P. et al. (2010) A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell, 39, 36-47.
    56. Bogliolo, M., Schuster, B., Stoepker, C., Derkunt, B., Su, Y., Raams, A., Trujillo, J.P., Minguillon, J., Ramirez, M.J., Pujol, R. et al. (2013) Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am J Hum Genet, 92, 800-806.
    57. Liu, W., Polaczek, P., Roubal, I., Meng, Y., Choe, W.-c., Caron, M.-C., Sedgeman, Carl A., Xi, Y., Liu, C., Wu, Q. et al. (2023) FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Research, 51, 9144-9165.
    58. Howlett, N.G., Taniguchi, T., Durkin, S.G., D'Andrea, A.D. and Glover, T.W. (2005) The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet, 14, 693-701.
    59. Yan, Z., Delannoy, M., Ling, C., Daee, D., Osman, F., Muniandy, P.A., Shen, X., Oostra, A.B., Du, H., Steltenpool, J. et al. (2010) A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol Cell, 37, 865-878.
    60. Hashimoto, Y., Ray Chaudhuri, A., Lopes, M. and Costanzo, V. (2010) Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol, 17, 1305-1311.
    61. Brooks, N.A. and O'Donnell, M.A. (2020) Combination Intravesical Therapy. Urol Clin North Am, 47, 83-91.
    62. Babjuk, M., Burger, M., Capoun, O., Cohen, D., Compérat, E.M., Dominguez Escrig, J.L., Gontero, P., Liedberg, F., Masson-Lecomte, A., Mostafid, A.H. et al. (2022) European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur Urol, 81, 75-94.
    63. Khaled, D., Taylor, J. and Holzbeierlein, J. (2020) Salvage Therapy for Non-muscle-invasive Bladder Cancer: Novel Intravesical Agents. Urol Clin North Am, 47, 119-128.
    64. Buttigliero, C., Tucci, M., Vignani, F., Scagliotti, G.V. and Di Maio, M. (2017) Molecular biomarkers to predict response to neoadjuvant chemotherapy for bladder cancer. Cancer Treat Rev, 54, 1-9.
    65. Yu, H.M. and Wang, T.C. (2012) Mechanism of cisplatin resistance in human urothelial carcinoma cells. Food Chem Toxicol, 50, 1226-1237.
    66. Kawashima, A., Takayama, H. and Tsujimura, A. (2012) A Review of ERCC1 Gene in Bladder Cancer: Implications for Carcinogenesis and Resistance to Chemoradiotherapy. Adv Urol, 2012, 812398.
    67. Bellmunt, J., Paz-Ares, L., Cuello, M., Cecere, F.L., Albiol, S., Guillem, V., Gallardo, E., Carles, J., Mendez, P., de la Cruz, J.J. et al. (2007) Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann Oncol, 18, 522-528.
    68. Drayton, R.M. and Catto, J.W. (2012) Molecular mechanisms of cisplatin resistance in bladder cancer. Expert Rev Anticancer Ther, 12, 271-281.
    69. Font, A., Taron, M., Gago, J.L., Costa, C., Sánchez, J.J., Carrato, C., Mora, M., Celiz, P., Perez, L., Rodríguez, D. et al. (2011) BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Ann Oncol, 22, 139-144.
    70. Sirbu, B.M., Couch, F.B. and Cortez, D. (2012) Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat Protoc, 7, 594-605.
    71. Ho, Y.C., Ku, C.S., Tsai, S.S., Shiu, J.L., Jiang, Y.Z., Miriam, H.E., Zhang, H.W., Chen, Y.T., Chiu, W.T., Chang, S.B. et al. (2022) PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair. PLoS Genet, 18, e1010545.
    72. Maya-Mendoza, A., Moudry, P., Merchut-Maya, J.M., Lee, M., Strauss, R. and Bartek, J. (2018) High speed of fork progression induces DNA replication stress and genomic instability. Nature, 559, 279-284.
    73. Zellweger, R., Dalcher, D., Mutreja, K., Berti, M., Schmid, J.A., Herrador, R., Vindigni, A. and Lopes, M. (2015) Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol, 208, 563-579.
    74. Sugimura, K., Takebayashi, S., Taguchi, H., Takeda, S. and Okumura, K. (2008) PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J Cell Biol, 183, 1203-1212.
    75. Ahel, I., Ahel, D., Matsusaka, T., Clark, A.J., Pines, J., Boulton, S.J. and West, S.C. (2008) Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature, 451, 81-85.
    76. Rulten, S.L., Cortes-Ledesma, F., Guo, L., Iles, N.J. and Caldecott, K.W. (2008) APLF (C2orf13) is a novel component of poly(ADP-ribose) signaling in mammalian cells. Mol Cell Biol, 28, 4620-4628.
    77. Gibson, B.A., Conrad, L.B., Huang, D. and Kraus, W.L. (2017) Generation and Characterization of Recombinant Antibody-like ADP-Ribose Binding Proteins. Biochemistry, 56, 6305-6316.
    78. Leidecker, O., Bonfiglio, J.J., Colby, T., Zhang, Q., Atanassov, I., Zaja, R., Palazzo, L., Stockum, A., Ahel, I. and Matic, I. (2016) Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat Chem Biol, 12, 998-1000.
    79. Larsen, S.C., Hendriks, I.A., Lyon, D., Jensen, L.J. and Nielsen, M.L. (2018) Systems-wide Analysis of Serine ADP-Ribosylation Reveals Widespread Occurrence and Site-Specific Overlap with Phosphorylation. Cell reports, 24, 2493-2505.e2494.
    80. Hendriks, I.A., Larsen, S.C. and Nielsen, M.L. (2019) An Advanced Strategy for Comprehensive Profiling of ADP-ribosylation Sites Using Mass Spectrometry-based Proteomics. Mol Cell Proteomics, 18, 1010-1026.
    81. Gibbs-Seymour, I., Fontana, P., Rack, J.G.M. and Ahel, I. (2016) HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity. Mol Cell, 62, 432-442.
    82. Suskiewicz, M.J., Zobel, F., Ogden, T.E.H., Fontana, P., Ariza, A., Yang, J.C., Zhu, K., Bracken, L., Hawthorne, W.J., Ahel, D. et al. (2020) HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature, 579, 598-602.
    83. Hendriks, I.A., Buch-Larsen, S.C., Prokhorova, E., Elsborg, J.D., Rebak, A., Zhu, K., Ahel, D., Lukas, C., Ahel, I. and Nielsen, M.L. (2021) The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome. Nature communications, 12, 5893.
    84. Jungmichel, S., Rosenthal, F., Altmeyer, M., Lukas, J., Hottiger, M.O. and Nielsen, M.L. (2013) Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses. Mol Cell, 52, 272-285.
    85. Meder, V.S., Boeglin, M., de Murcia, G. and Schreiber, V. (2005) PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci, 118, 211-222.
    86. D'Andrea, A.D. (2013) BRCA1: a missing link in the Fanconi anemia/BRCA pathway. Cancer Discov, 3, 376-378.
    87. Sirbu, B.M., Couch, F.B., Feigerle, J.T., Bhaskara, S., Hiebert, S.W. and Cortez, D. (2011) Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev, 25, 1320-1327.
    88. Ray Chaudhuri, A. and Nussenzweig, A. (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol, 18, 610-621.
    89. Roy, S., Luzwick, J.W. and Schlacher, K. (2018) SIRF: Quantitative in situ analysis of protein interactions at DNA replication forks. J Cell Biol, 217, 1521-1536.
    90. Shiu, J.L., Wu, C.K., Chang, S.B., Sun, Y.J., Chen, Y.J., Lai, C.C., Chiu, W.T., Chang, W.T., Myung, K., Su, W.P. et al. (2020) The HLTF-PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Oncogenesis, 9, 104.
    91. Sato, K., Shimomuki, M., Katsuki, Y., Takahashi, D., Kobayashi, W., Ishiai, M., Miyoshi, H., Takata, M. and Kurumizaka, H. (2016) FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5'-DNA end. Nucleic Acids Res, 44, 10758-10771.
    92. Sidorova, J. (2017) A game of substrates: replication fork remodeling and its roles in genome stability and chemo-resistance. Cell Stress, 1, 115-133.
    93. Chang, K.Y., Tsai, S.Y., Wu, C.M., Yen, C.J., Chuang, B.F. and Chang, J.Y. (2011) Novel phosphoinositide 3-kinase/mTOR dual inhibitor, NVP-BGT226, displays potent growth-inhibitory activity against human head and neck cancer cells in vitro and in vivo. Clin Cancer Res, 17, 7116-7126.
    94. Su, W.P., Hsu, S.H., Wu, C.K., Chang, S.B., Lin, Y.J., Yang, W.B., Hung, J.J., Chiu, W.T., Tzeng, S.F., Tseng, Y.L. et al. (2014) Chronic treatment with cisplatin induces replication-dependent sister chromatid recombination to confer cisplatin-resistant phenotype in nasopharyngeal carcinoma. Oncotarget, 5, 6323-6337.
    95. Tran, L., Xiao, J.-F., Agarwal, N., Duex, J.E. and Theodorescu, D. (2021) Advances in bladder cancer biology and therapy. Nature Reviews Cancer, 21, 104-121.
    96. (2005) Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur Urol, 48, 202-205; discussion 205-206.
    97. Zargar, H., Espiritu, P.N., Fairey, A.S., Mertens, L.S., Dinney, C.P., Mir, M.C., Krabbe, L.M., Cookson, M.S., Jacobsen, N.E., Gandhi, N.M. et al. (2015) Multicenter assessment of neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur Urol, 67, 241-249.
    98. Wezel, F., Vallo, S. and Roghmann, F. (2017) Do we have biomarkers to predict response to neoadjuvant and adjuvant chemotherapy and immunotherapy in bladder cancer? Transl Androl Urol, 6, 1067-1080.
    99. Bekker-Jensen, S., Fugger, K., Danielsen, J.R., Gromova, I., Sehested, M., Celis, J., Bartek, J., Lukas, J. and Mailand, N. (2007) Human Xip1 (C2orf13) is a novel regulator of cellular responses to DNA strand breaks. J Biol Chem, 282, 19638-19643.
    100. Dong, W., Li, L., Teng, X., Yang, X., Si, S. and Chai, J. (2020) End Processing Factor APLF Promotes NHEJ Efficiency and Contributes to TMZ- and Ionizing Radiation-Resistance in Glioblastoma Cells. Onco Targets Ther, 13, 10593-10605.
    101. Blastyák, A., Hajdú, I., Unk, I. and Haracska, L. (2010) Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol, 30, 684-693.
    102. Grundy, G.J., Rulten, S.L., Zeng, Z., Arribas-Bosacoma, R., Iles, N., Manley, K., Oliver, A. and Caldecott, K.W. (2013) APLF promotes the assembly and activity of non-homologous end joining protein complexes. The EMBO journal, 32, 112-125.
    103. Nemoz, C., Ropars, V., Frit, P., Gontier, A., Drevet, P., Yu, J., Guerois, R., Pitois, A., Comte, A., Delteil, C. et al. (2018) XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining. Nat Struct Mol Biol, 25, 971-980.
    104. Hammel, M., Yu, Y., Radhakrishnan, S.K., Chokshi, C., Tsai, M.S., Matsumoto, Y., Kuzdovich, M., Remesh, S.G., Fang, S., Tomkinson, A.E. et al. (2016) An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex. J Biol Chem, 291, 26987-27006.
    105. Dungrawala, H., Rose, K.L., Bhat, K.P., Mohni, K.N., Glick, G.G., Couch, F.B. and Cortez, D. (2015) The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability. Mol Cell, 59, 998-1010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE