簡易檢索 / 詳目顯示

研究生: 許紘瑋
Hsu, Hung-Wei
論文名稱: 氫氣輔助甲烷觸媒燃燒特性探討
The Characteristics of Hydrogen-Assisted Catalytic Ignition of Methane
指導教授: 陳志源
Chen, Jyh-Yuan
趙怡欽
Chao, Yei-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 220
中文關鍵詞: 觸媒點燃、氫氣輔助、甲烷、表面吸附競爭
外文關鍵詞: catalytic ignition, hydrogen-assisted, methane, surface coverage competition
相關次數: 點閱:58下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   觸媒燃燒已被證實為可有效降低污染、穩駐貧油燃燒且不致降低效率之燃燒技術,然而其應用卻限制於觸媒的耐溫性以及點火能力,其中耐溫性屬於材料性質部分,需藉由新的耐高溫觸媒開發以獲最終之解決。而點火能力方面,一般而言,觸媒反應需具備足夠之能量以促使反應物產生化學吸附並進一步反應,因此外加能量供給似乎已成為觸媒燃燒之必備條件。然而,此舉卻造成了能源的浪費以及加熱不易的窘境,不利於觸媒燃燒之實際需求。由於氫氣可於室溫下點燃,氫氣輔助點燃被視為應加緊研究並廣泛加以運用的輔助觸媒點燃技術。一直以來,氫氣輔助點燃的途徑因素均指向thermal上,因氫氣預反應使得溫度提升達欲輔助點火燃料之可燃溫度進而達觸媒點燃之目的。然而比較甲烷以及氫氣的吸附與擴散特性,以及氫氣預反應時所造成的自由基分布,此論點尚存在相當多的疑點尚待證實。本研究利用實驗量測以及非定常二維觸媒管道計算模擬對氫氣輔助甲烷觸媒點燃作一詳盡的探討,以期對氫氣輔助點燃之機制有進一步的了解。
      本研究藉由甲烷點火特徵、表面與氣相反應化學性質之探討,配合不同之氫氣/甲烷/空氣混合氣注入方式以及相關之計算模擬,結果顯示了氫氣預反應之操作條件下具有較佳之點火能力,且經由氫氣預反應觸媒表面溫度與外加能量之點燃比較,證實了氫氣輔助點燃非單純之熱輔助效應所致,而是存在有另一控制因素。計算模擬上顯示了C(*)覆蓋活性區造成觸媒毒化為低溫、低氫氣含量氫氣/甲烷/空氣混合氣表面觸媒反應點燃失敗的主要原因,而C(*)與H(*)對O(*)的競爭則為關鍵。氫氣預反應所產生之自由基可有效減緩C(*)覆蓋的生成,促進甲烷表面反應。此外,氫氣輔助甲烷觸媒點燃主要是藉由表面反應啟動,進而點燃整個點火過程,而此階段點燃成功與否之關鍵則為瞬間提升之溫度。研究亦發現由於表面反應與氣相反應條件之競爭,點火過程會有不同模態產生。最佳之實用操作則建議於高氫氣含量之輔助點燃為優,可使操作上獲得簡易有效之點火控制。

      Catalytic combustion has proved to be an effective way to stabilize ultra lean combustion for various fuels with acceptable pressure loss. Current applications are limited by the high mixture temperature necessary for chemisorption of fuel and subsequent ignition on surface. Addition of hydrogen to the fuel may help reduce the ignition temperature because ignition of hydrogen on platinum can occur at room temperature. The thermal effect is intuitively thought to be the main factor of the hydrogen-assisted catalytic ignition process, but evidence of this inference is lacking. Due to the high diffusivity and sticking coefficient of hydrogen, the competition between the adsorption of hydrogen and fuel on the catalyst needs to be considered. In addition, the effects of hydrogen on radical pools on the surface and their potential impact on possible gas phase reactions need to be explored. To this end, experimental measurements of transient behaviors of hydrogen-assisted methane-air catalytic combustion were conducted. Two-dimensional numerical simulations with a multi-step gas phase mechanism and surface reaction mechanism have been performed to provide a better understanding of the underlined processes. The characteristics of hydrogen-assisted catalytic ignition are examined and compared with externally heated ignition cases. Comparing to the externally heated ignition, lower ignition temperatures are achieved for methane/hydrogen mixture if the catalyst is fed with a hydrogen-air mixture first, a pre-reacting processing. The results of numerical simulations suggest that in addition to thermal effect, chemical kinetics on the catalyst surface can also play an important role in hydrogen-assisted catalyst combustion. For instance, the competition between the oxidation channels between surface species H(*) and C(*) is found in the hydrogen/methane/air mixture catalytic reaction. Detailed analysis on the interactions between various surface reactions and potential gas-phase ignition has been carried out and compared to experimental data.

    誌謝 iii 摘要 iv 第一章 簡介 vi 第二章 研究設計與方法 viii 第三章 甲烷觸媒點燃特徵 x 第四章 化學反應模式 xi 第五章 氫氣輔助觸媒點燃 xiii 第六章 數值計算模擬 xiv 第七章 結論 xv Abstract xvii Contents xix Tables List xxii Figures List xxiii Nomenclature xxx Chapter I Introduction 1 1.1 Background 1 1.2 Motivation 5 1.3 Catalytic Combustion 6 1.4 Catalytic Ignition and Analysis 8 1.4.1 Concept of Catalytic Ignition 9 1.4.2 Flow Configuration adopted 10 1.4.3 Ignition Ability 12 1.4.4 Behavior of Catalytic Ignition 15 1.4.5 Ignition Parameters and Catalytic mechanism 20 1.4.6 Problem and Analysis 31 1.5 Objectives 35 1.6 Thesis Outline 37 Chapter II Research Design and Method 39 2.1 Research Parameter 39 2.2 Experimental System 41 2.2.1 Combustion Device 42 2.2.2 Catalyst 43 2.3 Measurement System 44 2.3.1 Thermocouple 44 2.3.2 Infrared Thermometer 46 2.3.3 Gas Analyzer 48 2.4 Numerical Method 50 2.4.1 Governing Equations 51 2.4.2 Computation Domain 56 2.4.3 Boundary Conditions 57 2.5 Research Methodology and Procedure 60 Chapter III Characteristics of Methane Catalytic Ignition 62 3.1 Ignition Phenomena 62 3.2 Methane Ignition 67 3.3 Mechanism Requirements 71 Chapter IV Chemical Model of Numerical System 73 4.1 Chemical Mechanism Model 73 4.1.1 Gas Phase Reaction 74 4.1.2 Surface Reaction 75 4.2 Characteristics of Chemical Model 79 4.2.1 Gas Reaction Mechanism 80 4.2.2 Surface Reaction Mechanism 86 4.3 Sensitivity Analysis 96 Chapter V Hydrogen Assisted Ignition 100 5.1 Ignition Criterion 100 5.2 Hydrogen Pre-Reaction 104 5.3 Ignition Domain 106 5.4 Competition Phenomena 108 Chapter VI Numerical Prediction 116 6.1 Verification of Numerical Models 116 6.2 Modification of Surface Mechanism 122 6.3 Hydrogen-Assisted Ignition 127 Chapter VII Conclusion and Future Work 138 7.1 Conclusion 138 7.2 Future Work 142 REFERENCE 144 PUBLICATION LIST 217 VITA 219 著作權聲明 220

    Ablow, C. M., Schechter, S. and Wise H., 1980, “Catalytic Combustion in a Stagnation Point Boundary Layer” Combustion Science and Technology, Vol. 22 pp. 107-117.
    Anton, A. B., and Cadogan, D. C., 1990, “The Mechanism and Kinetics of Water Formation on Pt(111),” Surface Science Letters, Vol. 239 pp. 548-560.
    Barron, W. R., 1998, “Principles of infrared thermometry,” The Temperature Handbook 21st Century, Preview Edition omega.com Vol. MM pp. Z49-Z52.
    Behrendt, F., Deutschmann, O., Schmidt, R., and Warnatz, J., 1996, “Investigation of Ignition and Extinction of Hydrogen-Air and Methane-Air Mixtures over Platinum and Palladium,” Chapter 4 in: Heterogeneous Hydrocarbon Oxidation, ACS Symposium Series pp. 48-57.
    Bond, T. C., Noguchi, R. A., Chou, C. P., Mongia, R. K., Chen, J. Y., and Dibble, R. W., 1996, “Catalytic Oxidation of Natural Gas over Supported Platinum Flow Reactor Experiments and Detailed Numerical Modeling,” 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1771-1778.
    Brown, N. J., Scheffer, R. W., and Robben, F., 1983, “High-Temperature Oxidation of H2 on a Platinum Catalyst,” Combustion and Flame, Vol. 51, pp. 263-277.
    Bui, P. A., Vlachos, D. G., and Westmoreland, P. R., 1996, “Homogeneous Ignition of Hydrogen-Air Mixtures over Platinum,” 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1763-177.
    Bui, P. -A., Vlachos, D. G. and Westmoreland, P. R., 1997, “Modeling Ignition of Catalytic Reactors with Detailed Surface Kinetics and Transport: Oxidation of H2/Air Mixtures over Platinum Surfaces,” Ind. Eng. Chem. Res., Vol. 36 pp. 2558-2567.
    Bui, P. -A., Vlachos, D. G. and Westmoreland, P. R., 1997, “Catalytic ignition of methane/oxygen mixtures over platinum surfaces: comparison of detailed simulations and experiments,” Surface Science, Vol. 385 pp. L1029-L1034.
    Cardoso, M. A. A., and Luss, D., 1969, “Stability of catalytic wires,” Chem. Eng. Sci., Vol. 24 pp. 1699-1710.
    Cattolica, R. J., and Schefer R. W., 1982, “The Effect of Surface Chemistry on The Development of The [OH] in a Combustion Boundary Layer,” 19th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 311-318.
    Cho, P., and Law, C. K., 1986, “Catalytic Ignition of Fuel/Oxygen/Nitrogen Mixtures over Platinum,” Combustion and Flame, Vol. 66, pp. 159-170.
    Chou, C. P., Chen, J. Y., Evans, G. H., and Winters, W. S., 1999, “Numerical Studies of Methane Catalytic Combustion Inside a Monolith Honeycomb Reactor Using Multi-Step Surface Reactions,” Combustion Science and Technology, Vol. 150, pp. 27-58.
    Coltrin, M.E., Kee, R. J., and Rupley, F.M., 1990, “SURFACE CHEMKIN (Version 4.0): A Fortran Package for Analyzing Hetergeneous Chemical Kinetics at a Solid-Surface-Gas- Phase Interface,” Sandia National Laboratories Report SAND90-8003B.
    Coltrin, M.E., Kee, R.J., Rupley, F.M. and Meeks, E., 1996, “A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface-Gas-Phase Interface,” Sandia National Laboratories Report SAND96-8217.
    Deutschmann, O., Behrendt, F., and Warnatz, J., 1994, “Modelling and Simulation of Heterogeneous Oxidation of Methane on a Platinum Foil,” Catalysis Today, Vol.21, pp. 461-470.
    Deutschmann, O., Schmidt, R., Behrendt, F., and Warnatz, J., 1996, “Numerical Modeling of Catalytic Ignition,” 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1747-1754.
    Deutschmann, O., Maier, L. I., Riedel, U., Stroemman, A. H., and Dibble, R. W., 2000, “Hydrogen Assisted Catalytic Combustion of Methane on Platinum,” Catalysis Today, Vol. 59, pp. 141-150.
    Deutschmann, O., and Warnatz, J., 2002, “Diagnostics for Catalytic Combustion” Chapter 20 in Applied Combustion Diagnostics, Kohse-Hoeinghaus, K., and Jeffries, J. B. (eds.), Taylor and Francis Books Ltd pp. 518-533.
    Dixon-Lewis, G., 1968, “Flame Structure and Flame Reaction Kinetics II. Transport Phenomena in Multicomponent Systems,” Proceeding of the Royal Society, A., Vol. 307 pp. 111-135.
    Dogwiler, U., Benz, P., and Mantzaras, J., 1999, “Two-dimensional modelling for catalytically stabilized combustion of a lean methane-air mixture with elementary homogeneous and heterogeneous chemical reactions,” Combustion and Flame, Vol. 116 pp. 243-258.
    Eguchi, K. and Arai, H., 1996, “Recent advances in high temperature catalytic combustion,” Catalysis Today Vol. 29 pp. 379-386.
    Fassihi, M., Zhdanov, V. P., Rinnemo, M., Keck, K.-E., and Kasemo, B., 1993, “A Theoretical and Experimental Study of Catalytic Ignition in the Hydrogen-Oxygen Reaction on Platinum,” J. of Catalysis, Vol. 141 pp. 438-452.
    Fernandes, N.E., Park, Y.K., and Vlachos, D.G., 1999, “The Autothermal Behavior of Platinum Catalyzed Hydrogen Oxidation: Experiments and Modeling” Combustion and Flame, Vol. 118 pp. 164-178.
    Försth, M., Gudmundson, F., Persson, J. L. and Rosén, A. “The Influence of a Catalytic Surface on the Gas-Phase Combustion of H2 + O2” Combustion and Flame Vol. 119, pp. 144-153, 1999.
    Försth, M., Eisert, F., Gudmundson, F., Persson, J. and Rosén, A., 2000, “Analysis of the kinetics for the H2 + O2  H2O reaction on a hot Pt surface in the pressure range 0.10-10 Torr,” Catalysis Letters, Vol. 66 pp. 63-69.
    Försth, M., 2002, “Sensitivity analysis of the reaction mechanism for gas-phase chemistry of 2 + O2 mixtures induced by a hot Pt surface,” Combustion and Flame, Vol. 130 pp. 241-260.
    Frenklach, M., Wang, H., Goldenberg, M., Smith, G. P., Golden, D. M., Bowman, C. T., Hanson, R. K., Gardiner, W. C., Lissianski, V., 1995, “GRI-Mech- An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion,” GRI Technical Report No. GRI-95/0058.
    Grcar, J.F., 1991, “The Twopnt Program for Boundary Value Problems,” Sandia National Laboratories Report SAND91-8230.
    Griffin, T. A., Pfefferle, L. D., Dyer, M. J., and Crosley, D. R., 1989, “The ignition of methane/ethane boundary layer flows by heated catalytic surfaces,” Combustion Science and Technology, Vol. 65 pp. 19-37.
    Griffin, T. A., and Pfefferle, L. D., 1990, “Gas Phase and Catalytic Ignition of Methane and Ethane in Air over Platinum,” AIChE Journal, Vol. 36 pp. 861-870.
    Griffin, T. A., Calabrese, M., Pfefferle, L. D., Sappey, A., Copeland, R., and Crosley, D. R., 1992, “The influence of catalytic activity on the ignition of boundary layer flows. Part III: Hydroxyl radical measurements in low-pressure boundary layer flows,” Combustion and Flame, Vol. 90 pp. 11-33.
    Groppi, G., Belloli, A., Tronconi, E., and Forzatti, P., 1995, “Analysis of multidimensional models of monolith catalysts for hybrid combustors,” AIChE Journal, Vol. 41 pp. 2250-2260.
    Groppi, G., Belloli, A., Tronconi, E., and Forzatti, P., 1995, “A Comparison of Lumped and Distributed Models of Monolith Catalytic Combustors,” Chemical Engineering Science, Vol. 50, pp. 2705-2715.
    Groppi, G., Tronconi, E., and Forzatti, P., 1996, “Investigations on Catalytic Combustion for Gas Turbine Applications through Mathematical Model Analysis,” Applied Catalysis A: General, Vol. 138, pp. 177-197.
    Gudmundson, F., Persson, J. L., Försth, M., Behrendt, F., Kasemo, B. and Rosén, A., 1998, “OH Gas Phase Chemistry outside a Pt Catalyst,” Journal of Catalysis, Vol. 179 pp. 420-430.
    Hellsing, B., Kasemo, B., Ljungström, S., and Rosén, A., 1987, “Kinetic Model and Experimental Results for H2O and OH Production Rates on Pt,” Surface Science, Vol. 189/190 pp. 851-860.
    Hellsing, B., and Kasemo, B., 1988, “Kinetic model study of OH desorption during H2O production on Pt”, Chemical Physics Letters, Vol. 148 pp. 465-471.
    Hellsing, B., Kasemo, B., and Zhdanov, V. P., 1991, “Kinetics of the hydrogen-oxygen reaction on platinum,” J. Catal. Vol. 132 pp. 210.
    Hickman, D. A., and Schmidt, L. D., 1993, “Steps in CH4 Oxidation on Pt and Rh Surfaces:High-Temperature Reactor Simulations,” AIChE Journal, Vol. 39 pp. 1164-1177.
    Ikeda, H., Libby, P.A., Williams, F.A., and Sato, J., 1993, “Catalytic Combustion of Hydrogen-Air Mixtures in Stagnation Flows,” Combustion and Flame, Vol. 93 pp. 138-148.
    Ikeda, H., Sata, J., and Williams, F. A., 1995, “Surfaces Kinetics for Catalytic Combustion of Hydrogen-Air Mixtures on Platinum at Atmosphere Pressure in Stagnation Flows,” Surface Scie nce, Vol. 326 pp. 11-26.
    Irvin Glassman, 1987, Combustion second edition ACADEMIC PRESS, INC.
    Kwasniewski, V. J., and Schmidt, L. D., 1992, “Steps in the reaction H2 + O2  H2O on Pt(111): laser-induced thermal desorption at low temperature,” The Journal of Physical Chemistry, Vol. 92 pp. 5931-5938.
    Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., and Miller, J. A., 1991, “ A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties,” Sandia National Laboratories Report, SAND86-8246.
    Kee, R.J., Rupley, F.M., Meeks, E. and Miller,J.A., 1996, “Chemkin-III: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical and Plasma Kinetics,” Sandia National Laboratories Report SAND96-8216.
    Khan, K. M., and Ahmad, W., 2002, “NO-CO catalytic reaction on a square lattice: the effect of the Eley-Rideal mechanism,” Journal of Physical A: Mathematical and General, Vol. 35 pp. 2713-2723.
    Law, C. K., and Law, H. K., 1979, “Thermal ignition analysis in boundary layer flows,” Journal of Fluid Mechanics, Vol. 92 pp. 97-108.
    Law, C. K., and Law, H. K., 1981, “Flate plate ignition with reactant consumption,” Comb. Sci. and Tech., Vol. 25 pp. 1-8.
    Law, C. K., and Chung, S. H., 1983, “Thermal and Catalytic Inhibition of Ignition Through Reactant Depletion,” Combustion and Flame, Vol. 32: pp. 307-312.
    Lewis, B., and Von Elbe, G., 1961, Combustion Flames and Explosions in Gases Academic Press, N. Y.
    Lin, M. C., and Sheu, W. J., 1994, “Theoretical Criterion for Ignition of a Combustible Gas Flowing over a Wedge,” Combustion Science and Technology, Vol. 99 pp. 299-312.
    Ljungström, S., Kasemo, B., Rosën, A., Wahnström, T., and Fridell, E., 1989, “An Experimental Study of the Kinetics of OH and H2O Formation on Pt in the H2 + O2 Reaction,” Surface Science, Vol. 216 pp. 63-92.
    Maxwell, I. E., Naber, J. E., de Jong, K. P., 1994, “The pivotal role of catalysis in energy related environmental technology,” Applied Catalysis A: General, Vol. 113 pp. 153-173.
    Markatou, P., Pefefferle, L. D., and Smooke, M. D., 1991, “The Influence of Surface Chemistry on the Development of Minor Species Profiles in the Premixed Boundary Layer Combustion of an H2/Air Mixture,” Combustion Science and Technology, Vol. 79 pp. 247-268.
    Markatou, P., Pefefferle, L. D., and Smooke, M. D., 1993, “A computational study of methane-air combustion over heated catalytic and non-catalytic surfaces,” Combustion and Flame, Vol. 93 pp. 185-201.
    Moallemi, F., Batley, G., Dupont, V., Foster, T. J., Pourkashanian, M., and Williams, A., 1999, “Chemical Modelling and Measurements of the Catalytic Combustion of CH4/ Air Mixtures on Platinum and Palladium Catalysts,” Catalysis Today, Vol. 47 pp.235-244.
    Mori, Y., Miyauchi, T., and Hirano, M., 1977, “Catalytic Combustion of Premixed Hydrogen-Air,” Combustion and Flame, Vol. 30 pp. 193-205.
    Park, Y. K., Bui, P. A., and Vlachos, D. G., 1998, “Operation Regimes in Catalytic Combustion: H2/Air Mixtures near Pt,” AICHE J., Vol. 44, No.9 pp. 2035-2043.
    Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow. Hemisphere, Washimgton.
    Pfefferle, L. D., Griffin, T. A., Winter, M., Crosley, D. R., and Dyer, M. J., 1989, “The influence of catalytic activity on the ignition of boundary layer flows Part I: Hydroxyl radical measurements,” Combustion and Flame, Vol. 76 pp. 325-338.
    Pfefferle, L. D., Griffin, T. A., Dyer, M. J., and Crosley, D. R., 1989, “The influence of catalytic activity on the gas phase ignition of boundary layer flows Part II. Oxygen atom measurements,” Combustion and Flame, Vol. 76 pp. 339-349.
    Pfefferle, W. C., and Pfefferle, L. D., 1986, “Catalytically Stabilized Combustion,” Prog. Energy Combust. Sci., Vol. 12 pp. 25-41.
    Raja, L. L., Kee, R. J., and Petzold, L. R., 1998, “Simulation of the Transient, Compressible, Gas-Dynamic Behavior of Catalytic-Combustion Ignition in Stagnation Flows,” 27th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 2249-2257.
    Rinnemo, M. Fassihi, M.and Kasemo, B., 1993, “The critical condition for catalytic ignition. H2/O2 on Pt,” Chem. Phys. Lett., Vol. 211 pp. 60-64.
    Rinnemo, M., Deutschmann, O., Behrendt, F., and Kasemo, B., 1997, “Experimental and Numerical Investigation of the Catalytic Ignition of Mixtures of Hydrogen and Oxygen on Platinum,” Combustion and Flame, Vol. 111 pp. 312-326.
    Rinnemo, M., Kulginov, D., Johansson, S., Wong, K. L., Zhdanov, V. P., and Kasemo, B., 1997, “Catalytic ignition in the CO-O2 reaction on Platinum: Experiment and Simulations,” Surface Science, Vol. 376 pp. 297-309.
    Schefer, R. W., Robben, F. and Cheng, R. K., 1980, “Catalyzed Combustion of H2/Air Mixtures in a Flat-Plate Boundary Layer: I. Experimental Results,” Combustion and Flame, Vol. 38 pp. 51-63.
    Schefer R. W., 1982, “Catalyzed combustion of H2/air mixtures in a flat plate boundary layer: II. Numerical model,” Combustion and Flame, Vol. 45 pp. 171-190.
    Schlegel, A., Benz, P., Griffin, T., Weisenstein W., and Bockhorn, H., 1996, “Catalytic Stabilization of Lean Premixed Combustion: Method for Improving NOx Emissions,” Combustion and Flame, Vol. 105 pp. 332-340.
    Schwiedernoch, R., Tischer, S., Deutschmann, O., and Warnatz, J., 2002, “Experimental and numerical investigation of the ignition of methane combustion in a platinum-coated honeycomb monolith,” Proc. Combust. Inst., Vol. 29 pp. 1005-1011.
    Seo, Y. S., Cho, S. J., Kang, S. K. and Shin, H. D., 2000, “Numerical Studies of Catalytic Combustion in a Catalytically Stabilized Combustor,” Internal Journal of Energy Research, Vol. 24 pp. 1049-1064.
    Sheu, W. J. and Lin, M. C., 1995, “Gas-Phase Ignition of Accelerate Boundary-Layer Flows on Strongly Catalytic Surfaces,” Combustion and Flame, Vol. 103 pp. 161-170.
    Smooke, M. D., 1991, “Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames,” Lecture Notes in Physics, Vol. 384 Springer-Verlag pp. 1-28.
    Tischer, S., Correa, C., and Deutschmann, O., 2001, “Transient three-dimensional simulation of a catalytic combustion monolith using detailed models for heterogeneous and homogeneous reactions and transport phenomena,” Catalysis Today, Vol. 69 pp. 57-62
    Treviño, C., and Fernandez-Pello, A. C., 1981, “Catalytic Flat Plate Boundary Layer Ignition,” Combustion Science and Technology, Vol. 26 pp. 245-251.
    Treviño, C., 1983, “Gas-Phase Ignition of Premixed Fuel by Catalytic Bodies in Stagnation Flow,” Combustion Science and Technology, Vol. 30 pp. 213-229.
    Treviño, C. and Peters, N., 1985, “Gas-Phase Boundary Layer Ignition on a Catalytic Flat Plate with Heat Loss,” Combustion and Flame, Vol. 61 pp. 39-49.
    Treviño, C. and Prince, J. C., and Tejero, J., 1999, “Catalytic ignition of dry carbon monoxide in a stagnation-point flow,” Combustion and Flame, Vol. 119 pp. 505-512.
    Trimm, D. L., and Lam, C.-W., 1980, “The combustion of methane on platinum-alumina fibre catalysts-I: Kinetics and mechanism,” Chemical Engineering Science, Vol. 35 pp. 1405-1413.
    Veser, G., and Schmidt, L. D., 1996, “Ignition and Extinction in Catalytic Oxidation of Hydrocarbons” AIChE Journal, Vol. 42 pp. 1077-1087.
    Veser, G., and Frauhammer, J., 2000, “Modelling steady state and ignition during catalytic methane oxidation in a monolith reactor,” Chemical Engineering Science, Vol. 55 pp. 2271-2286.
    Veser, G., Frauhammer, J., and Friedle, U., 2000, “Syngas formation by direct oxidation of methane reaction mechanisms and new reactor concepts,” Catalysis Today, Vol. 61 pp. 55-64.
    Vlachos, D. G., and Bui, P. -A., 1996, “Catalytic ignition and extinction of hydrogen: comparison of simulations and experiments” Surface Science, Vol. 364 pp. L625-L630.
    Warnatz, J., 1992, “Resolution of Gas Phase and Surface Combustion into Elementary Reactions,” Twenty-Fourh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 553-579.
    Warnatz,J., Allendorf, M. D., Kee, R. J. and Coltrin, M. E., 1994, “A Model of Elementary Chemistry and Fluid Mechanics in the Combustion of Hydrogen on Platinum Surfaces,” Combustion and Flame, Vol. 96 pp. 393-406.
    Wahnstrom, T., Fridell, E., Ljungstrom, S., Hellsing, B., Kasemo, B. and Rosen, A., 1989, “Determination of the activation energy for OH desorption in the H2 + O2 reaction on Polycrystalline Platinum,” Surface Science, Vol. 223 pp. L905-L912.
    Williams, W. R., Stenzel, M. T., Song, X., and Schmidt, L. D., 1991, “Bifurcation Behavior in Homogeneous-Heterogeneous Combustion: I. Experimental Results over Platinum,” Combustion and Flame, Vol. 84 pp. 277-291.
    Williams, W. R., Marks, C. M., and Schmidt, L. D., 1992, “Steps in the Reaction H2 + O2  H2O on Pt: OH Desorption at High Temperature,” The Journal of Physical Chemistry, Vol. 96 pp. 5922-5931.
    Winters, W. S., Evans, G. H., and Moen, C. D., 1996, “CURRENT- A Computer Code for Modeling Two-Dimensinal, Chemically Reacting, Low Mach Number Flows,” Sandia National Laboratories Report SAND97-8202.
    Zwinkels, M. F. M., Eloise Heginuz, G. M., Gregertsen, B. H., Sjöström, K., and Järås, S. G., 1997, “Catalytic Combustion of Gasified Biomass over Pt/Al2O3,” Applied Catalysis A: General, Vol. 148 pp. 325-341.

    下載圖示 校內:立即公開
    校外:2004-07-13公開
    QR CODE