簡易檢索 / 詳目顯示

研究生: 葉恩佑
Yeh, En-Yu
論文名稱: 三維向量噴嘴動態流場之數值模擬分析
Numerical Simulation Analyses on the Dynamic Flow of a Three-Dimensional Thrust-Vectoring Nozzle
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 86
中文關鍵詞: 向量噴嘴推力向量動態模擬效能分析
外文關鍵詞: 3D Nozzle, Thrust Vectoring, Dynamic Simulation, Performance Analysis
相關次數: 點閱:116下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新一代戰鬥機如美軍F-35系列戰機利用三維向量噴嘴達到高機動性之飛行表現,展現了向量噴嘴研發重要性,而向量噴嘴之高實驗成本以及高速流體導致實驗的量測困難,使本研究之三維向量噴嘴動態流場模擬,做為三維向量噴嘴之效能評估具備一定重要性。本研究之數值模擬使用商用CFD軟體ANASYS FLUENT並採用SST k-ω紊流模式,並成功地建立動態網格模擬機制進行出口推力變化之分析,且增添穩態之外流場模擬進行各參數比較分析。由過往文獻實驗結果發現噴嘴之形狀以及偏轉角度將影響流場狀態,並影響噴嘴之推力表現。因此本研究進一步針對噴嘴之偏轉設計進行各參數分析,並增添穩態外流場,對噴嘴之流場變化以及推力之影響進行探討。由模擬結果發現,過小之偏轉曲率半徑將導致分離流,使噴嘴內部產生迴流區,大幅降低出口推力以及速度,且擺動角速度之變化時間若小於噴嘴流場達到穩態之時間,則擺動速度之影響甚小。而添加外流場的部分更貼近實際值,且整體推力效率趨勢也都符合實際情形,可知本研究之模擬方法具有一定之可靠度。同時為了了解三維向量噴嘴之壁面受熱情形以及於實驗設之結構強度需求,也增添了壁面熱傳效應以及壁面受力分析,結果顯示,隨三維向量噴嘴擺動於轉接段之上壁面為局部壓縮之高溫區域,為材料耐熱考量之關鍵。而壁面受力也隨擺動角度增大於90度擺動時有最大受力,為結構設計之重點。

    The internal and external flows of a 3D thrust-vectoring nozzle are analyzed in this study through numerical simulation. The characteristics that this research concerned include the thrust of the nozzle, geometry of the transition section, angular velocity of the deflector section, wall temperature, and the stress of the nozzle wall. In the present study, the commercial CFD software, ANSYS FLUENT, employing the SST k-ω turbulence model and the dynamic-grid mechanism, was applied to analyzing the nozzle thrust variations. The simulation results of previous studies indicated that without considering external flow, the pressure would be underestimated and the Mach number would be overestimated at the nozzle exit. Therefore, in the present research, the influences external flow had upon internal flow and the thrust of the nozzle were observed, especially with the swing of the deflector section. The results showed that the reverse flow caused by separation flow existed when the radius of curvature decreased. This phenomenon led to the decrease of the nozzle thrust dramatically. To predict the wall temperature during the swing of nozzle deflector section, the heat transfer in the nozzle wall was studied. The finding revealed that the nozzle wall exhibited different temperatures at different angle. Moreover, the swinging transition section that blocked the gas stream would have the local high temperature or a value close to the inlet high temperature.

    摘要 I SUMMARY III 誌謝 XI 目錄 XIII 圖目錄 XVI 表目錄 XVI 符號說明 XX 第一章、導論 1 §1-1前言 1 §1-2文獻回顧 5 §1-3研究動機及目的 13 第二章、數學與物理模式 15 §2-1 噴嘴特性 15 §2-2 基本假設 17 §2-3 氣相流場統御方程式 18 §2-4 固相之統御方程式 20 §2-5 紊流模型 20 §2-6 邊牆函數模式 23 §2-7 界面統御方程式 24 第三章、數值方法 27 §3-1 控制體積轉換之傳輸方程式 28 §3-2 SIMPLE運算法則 29 §3-3 鬆弛係數 30 §3-4 收斂標準 31 §3-5 動態網格模擬原理 31 §3-5-1動態網格守恆方程式 31 §3-5-2 動態網格更新方法 32 §3-5-2-1 動態分層法 33 第四章、結果與討論 34 §4-1三維向量噴嘴網格獨立測試 35 §4-2本研究之三維向量噴嘴設計 40 §4-3三維向量噴嘴之曲率半徑比較 43 §4-4三維向量噴嘴之擺動角速度比較 56 §4-5增添外流場之三維向量噴嘴穩態流場分析 58 §4-6三維向量噴嘴與二維向量噴嘴之比較 67 §4-7三維向量噴嘴加入壁面熱傳分析 70 §4-8三維向量噴嘴之壁面受力 76 第五章、結論與未來建議 78 參考文獻 81 附錄A-推力效率之定義 85

    【1】 J. C. Páscoa, A. Dumas, M. Trancossi, P. Stewart ,and D. Vucinic, "A Review of Thrust-Vectoring in Support of a V/STOL Non-Moving Mechanical Propulsion System", Central European Journal of Engineering, vol. 3, Issue 3, pp 374-388,Sep. 2013.
    【2】 王立杰, “俄製戰機超級機動性之探討,” 空軍學術月刊, 第526期, Sep. 1990.
    【3】 Thrust Vectoring Nozzle of the F135-PW-600 STOVL Variant (Web:http://en.wikipedia.org/wiki/Pratt_%26_Whitney_F135)
    【4】 Rolls-Royce To Deliver First Lift Fan For F-35B,(Web: http://en.wikipedia.org/wiki/Rolls-Royce_LiftSystem)
    【5】 A. J. Saddington ,and K. Knowles, “A Review of Out-of-Ground-Effect Propulsion-Induced Interference on STOVL Aircraft,” Prog. Aerosp. Sci., Vol. 41, pp.175-191, 2005.
    【6】 R. Kalidass ,and S. Balaji, “Design and Performance Analysis of Single Inlet Multiple Outlet (SIMO) Nozzle with Thrust Vector Control,” IJERT, Vol.3, Feb 2014.
    【7】 F. J. Capone, “Static Performance of Five Twin-Engine Non-Axisymmetric Nozzles with Vectoring and Reversing Capability,” AIAA TP-1224, May 1978.
    【8】 V.DRĂGAN, ” A Novel Divertless Thrust Vectoring Nozzle Using the Counter-Circulation Aerodynamic Effect: Maximal Aerodynamic Yaw Actuator-MAYA,“INCAS BULLETIN, Vol.3, pp. 39-46,2011.
    【9】 J. S. Orme ,and R. L. Sims,“Selected Performance Measurements of The F-15 ACTIVE Axisymmetric Thrust-Vectoring Nozzle,”The ISABE Annual Symposium, pp.166, Sep., 1999.
    【10】 J.D.Flamm, “Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring,”AIAA98-3255, July, 1998
    【11】 V. Sherbaum ,and M. Lichtsinder, “Jet Deflection Angles in Military, Civil and RPV Thrust Vectoring Aircraft,” Int. J. Turbo Jet Eng., Vol. 15, No. 2, pp. 91-94, 1998.
    【12】 S. C. Asbury, and Craig A. Hunter, “Effects of Convoluted Divergent Flap Contouring on the Performance of a Fixed-Geometry Nonaxisymmetric Exhaust Nozzle” Langley Research Center, Hampton, Virginia,1999.
    【13】 D.J.Wing ,and F.J.Capone,”Performance Characteristics of Two Multiaxis Thrust-Vectoring Nozzles at Mach Numbers up to 1.28,” NASA Technical Paper 3313,May 1993.
    【14】 A. Bailey, L. L. Price and J. G. Pipes, “Effect of Ambient Pressure on Nozzle Centerline Flow Properties,” AIAA J., Vol. 23, No. 6, pp. 953, June 1985.
    【15】 J.R. Burley, and J.R. Carlson, “Circular-to-Rectangular Ducts for High-Aspect Ratio Nonaxisymmetric Nozzle,” AIAA-85-1346, July 1985.
    【16】 鐘武錕,“以實驗方法探討圓形截面轉變為矩形截面之管流”,航空太空工程學系, 國立成功大學, 碩士論文, 中華民國七十五年.
    【17】 Dores D., Madruga Santos M., Krothapalli A., Lourenco L., Collins E., Alvi F. ,and Strykowski P., 2006, “Characterization of a Counterflow Thrust Vectoring Scheme on a Gas Turbine Engine Exhaust Jet,”3rd AIAA Flow Control Conference, AIAA Paper, 2006-3516.
    【18】 R. J. Re ,and L. D. Leavitt, “Static Internal Performance Including Thrust Vectoring and Reversing of Two-Dimensional Convergent-Divergent Nozzles,” NASA TP-2253, Feb.1984.
    【19】 李家崧,“小型渦輪噴射引擎二維向量推力噴嘴之設計與動態模型建立及應用在水平單擺之穩定分析與驗證”,機械與航太工程研究所, 中華大學, 碩士論文, 中華民國九十二年.
    【20】 Daniel Ikaza, “Thrust Vector Nozzle for Modern Military Aircraft,”NATO R&T ORGANIZATION Symposium, 8th-11thMay.2000.
    【21】 J. W. Smolka, L. A. Walker, G. H. Johnson, and G. S. Schkolnik, “F-15 ACTIVE Flight Research Program, ”Society of Experimental Test Pilots 40th Symposium Preceding, 1996.
    【22】 戴昌賢, 厲復霖, 苗志銘, 孫維新, "多維向量推力噴嘴動態性能之數值研究", 力學, 15, 13-23, 中華民國八十八年.
    【23】 王文弘, “三維加高展弦比轉接段向量推力系統之性能與流場分析”, 航空太空工程學系, 國立成功大學, 碩士論文, 中華民國九十二年.
    【24】 湯于正, “二維向量噴嘴之動態模擬分析”, 航空太空工程學系, 國立成功大學, 碩士論文, 中華民國一百零一年.
    【25】 鄭兆均, “二維向量化推力噴嘴之設計與流場分析”, 航空太空工程學系, 國立成功大學, 碩士論文, 中華民國九十一年.
    【26】 Gu, R., and Xu, J., “Effects of Cavity on the Performance of Dual Throat Nozzle During the Thrust-Vectoring Starting Transient Process,” ASME J. Eng. Gas Turbines Power, 2014.
    【27】 周育丞,“二維向量噴嘴之流場及平板受力模擬分析研究”, 航空太空工程學系, 國立成功大學, 碩士論文, 中華民國一百零二年.
    【28】 劉延益,“外流場對二維向量噴嘴流場及出口推力影響之模擬分析研究”, 航空太空工程學系, 國立成功大學, 碩士論文, 中華民國一百零三年.
    【29】 S.P. Pao, and J.R. Carlson, “Computational Investigation of Circular-to-Rectangular Transition Duct,” Journal of Propulsion and Power, Vol. 10, No. 1, Jan.-Feb, 1994.
    【30】 F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA J., Vol.32, No.8, Aug. 1994.
    【31】 B. L. Berrier , and R. J. Re,“A Review of Thrust-Vectoring Technology Schemes for Fighter Aircraft,”AIAA pp.78-1023, July, 1978.
    【32】 吳望一, 流體力學, 狀元出版社, 1989.
    【33】 ANSYS FLUENT, “ANSYS FLUENT 15.0 User Guide”, ANSYS Inc, 2013.
    【34】 B. E. Launder, and D. B. Spalding,“The Numerical Computation of Turbulent Flows,”Computer Methods in Applied Mechanics and Engineering, pp.269-289, 1974.
    【35】 P. G. Hill, and C. R. Peterson,“Mechanics and Thermodynamics of Propulsion,”2nd Ed., Addison-Wesley, 1992.
    【36】 F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, “Fundamentals of Heat and Mass Transfer,”John Welly and Sons, Asia, pp. A-5, 2007.

    下載圖示 校內:2017-08-27公開
    校外:2017-08-27公開
    QR CODE