簡易檢索 / 詳目顯示

研究生: 徐嘉英
Hsu, Chia-Ying
論文名稱: 核磁共振陀螺儀的數學建模與誤差分析
Modeling and Error Analysis of Nuclear Magnetic Resonance Gyroscope
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 87
中文關鍵詞: 核磁共振陀螺儀相位檢測誤差原子核自旋運動Bloch 方程式
外文關鍵詞: nuclear magnetic resonance gyroscope, phase detection error, motion of nuclear spin, the Bloch equation
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文目的在於研究核磁共振陀螺儀的運作模式以及載具角速率檢測的誤差分析。理論上,核磁共振陀螺儀具有低成本、高精度、小尺寸,以及輸入載具角速度不受限等特性,這些特性優於現役陀螺儀,值得吾人深入探討。論文首先介紹核磁共振陀螺儀的運作原理及數學模型,再依據物理參數及數學模型進行開迴路以及閉迴路系統的模擬與誤差分析。
      核磁共振陀螺儀是以原子核作為轉子,原子核的旋轉運動包含自旋、章動和進動,這些運動類比於傳統陀螺儀的運動模式,因此吾人可以利用原子核磁矩進動的相位角速率去檢測載具的角速率。核磁共振陀螺儀是以 Bloch 方程式作為其數學模型,吾人可以利用此數學模型分析開迴路及閉迴路系統的動態響應。不論是開迴路,還是閉迴路響應,都是由原子核磁矩的相位變化率去估測載具的旋轉角速率。兩者的差別在於開迴路系統的磁矩振幅大小無法維持固定,不利於磁矩相位角速率的測量。閉迴路系統則透過訊號回授,可穩定磁矩的振幅,利於相位的測量。

    The purpose of this thesis is to study the operation mode of the nuclear magnetic resonance gyroscope and the error analysis of the angular rate detection of the vehicle. In theory, the nuclear magnetic resonance gyroscope has low-cost, high-precision, small size, and the angular velocity of the input vehicle is not limited. These characteristics are better than the active gyroscope, which is worthy of further discussion. The paper first introduces the operation principle and mathematical model of the nuclear magnetic resonance gyroscope and then carries out simulation and error analysis of the open-loop and closed-loop system based on physical parameters and mathematical models.

    The nuclear magnetic resonance gyroscope is a nucleus with a nucleus as the rotor. The rotational motion of the nucleus contains spin, nutation, and precession. These motions are analogous to the motion modes of traditional gyroscopes. Therefore, we can use the phase angular velocity of the nucleus magnetic moment precession to detect The angular rate of the vehicle. The nuclear magnetic resonance gyroscope uses the Bloch equation as its mathematical model. We can use this mathematical model to analyze the dynamic response of the open-loop and closed-loop systems. Whether it is an open-loop or a closed-loop response, the phase rate of change of the nuclear magnetic moment is used to estimate the rotational angular rate of the carrier. The difference between the two is that the amplitude of the magnetic moment of the open-loop system cannot be maintained fixed, which is not conducive to the measurement of the angular rate of the magnetic moment. The closed-loop system transmits feedback through the signal, which stabilizes the amplitude of the magnetic moment and facilitates phase measurement.

    目錄 摘要 II Modeling and Error Analysis of Nuclear Magnetic Resonance Gyroscope III 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 符號表 XVI 第1章 緒論 1 1.1 文獻回顧 1 1.2 研究動機與目的 5 1.3 章節架構 6 第2章 核磁共振陀螺儀的工作原理與組成架構 8 2.1 核磁共振理論 8 2.2 核磁共振陀螺儀原理 9 2.3 核磁共振陀螺儀的組成結構 14 第3章 核磁共振陀螺儀的數學模型 19 3.1 自旋交換光幫浦核磁共振陀螺儀 19 3.2 核磁共振陀螺儀的偏移來源及對應之補償方式 23 3.2.1 偏移來源 24 3.2.2 磁場偏移量 26 3.2.3 磁場偏移補償 29 3.3 Bloch球面上的原子自旋態 33 3.3.1 座標轉換 33 3.3.2 129Xe原子自旋態隨時間變化 35 第4章 系統模擬與誤差分析 38 4.1 開迴路模擬系統與結果 38 4.2 閉迴路模擬系統與結果 47 4.3 加入初始相位檢測誤差δβ 61 第5章 結論與期望 67 5.1 結論 67 5.2 未來期望 69 參考文獻 70 附錄A. 黎曼分裂(Zeeman Effect) 75 附錄B. 核磁共振陀螺儀的預測熱模型 79 附錄C. 微型核磁共振陀螺儀的製作 80 附錄D. 美國國防高等研究計畫署核磁共振陀螺儀 85

    [1] Zhi-Ping Liu, Li-Li Wu, "Development History of Gyroscope," Electronic Design Engineering, pp. 66-69, 4 2012.
    [2] Pedro Castillo, Rogelio Lozano and Alejandro E. Dzul, Modelling and Control of Mini Flying Machines, London: Springer-Verlag London Limited, 2005.
    [3] Sato Y. and Packard R.E., "Superfluid Helium Quantum Interference Devices: Physics and Applications," Reports on Progress in Physics, vol. 75, no. 1, p. 016401, 2011.
    [4] Zheng Xie, Jianye Liu, Wei Zhao, Baoo-Zhang Song, Ming-Yu Feng, “ The Exploratory Research of a Novel Gyroscope Based on Superfluid Josephson Effect,”
    IEEE/ION Position, Location and Navigation Symposium, Indian Wells, CA, pp. 14-19, 2010.
    [5] Ashok Ajoy and Paola Cappellaro, "Stable Three-axis Nuclear-spin Gyroscope in Diamond," Physical Review A, vol. 86, no. 6, p. 062104, 2012.
    [6] X. L. Benet, "Study of the Performance of an Inertial Measurement Unit on Board a Launcher," 2014.
    [7] Thad G. Walker, Michael S. Larsen, "Spin-Exchange Pumped NMR Gyros," in Advances in atomic, molecular, and optical physics, vol. 65, Elsevier, 2016, pp. 373-401.
    [8] Run-bing Li, Jin Wang, Ming-sheng Zhan, "Cold atom interferometers and their applications in space," Space Physics Colloquium, pp. 652-657, 2008.
    [9] Run-bing, Li, Jin, Wang, Ming-sheng, Zhan, "New Generation Inertial Navigation Technology: Cold Atom Gyroscope," Gnss World of China, vol. 4, pp. 1-5, 2010.
    [10] Xiang-hong Cheng, Hong-mei Chen, Yu-qing Zhou, De-jun Wan, "Review of Nuclear magnetic Resonance Gyroscopes," J Chin Inert Technol, vol. 14, no. 6, pp. 86-90, 12 2016.
    [11] Larsen, Michael and Bulatowicz, Michael, "Nuclear Magnetic Resonance Gyroscope: For DARPA's micro-technology for positioning, navigation and timing program," 2014 International Symposium on Inertial Sensors and Systems (ISISS), pp. 1-5, 2014.
    [12] Radwan M. Noor, Venu Gundeti, and Andrei M. Shkel, "A Status on Components Development for Folded Micro NMR Gyro," 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), pp. 156-159, 2017.
    [13] M. Salleras, E.J. Eklund, I.P. Prikhodko, and A.M. Shkel, "Predictive Thermal Model for Indirect Temperature Measurement Inside Atomic Cell of Nuclear Magnetic Resonance Gyroscope," TRANSDUCERS 2009-2009 International Solid-State Sensors, Actuators and Microsystems Conference, pp. 304-307, 2009.
    [14] Shuang-ai Wan, Xiao-guang Sun, Xin Zheng, Jie Qin, "Prospective Development of Nuclear Magnetic Resonance Gyroscope," Navigation Positioning & Timing, vol. 4, no. 1, pp. 7-13, 1 2017.
    [15] Kai Liu, Wei-ping Zhang, Wen-yuan Chen, Kai Li, Fu-yan Dai, Feng Cui, Xiao-sheng Wu, Gao-yin Ma and Qi-jun Xiao, "The Development of Micro-gyroscope Technology," Journal of Micromechanics and Microengineering, vol. 19, no. 11, p. 113001, 16 10 2009.
    [16] C. Zhang, H. Yuan, Z. Tang, W. Quan, and J. C. Fang, "Inertial Rotation Measruement with Atomic Spins: From Angular Momentum Conservation to Quantum Phase Theory,"
    Applied Physics Reviews, vol. 3, no. 4, p. 041305, 2016.
    [17] Barbour, Neil M., "Inertial Navigation Sensors," Charles Stark Draper Lab Inc Cambridge Ma, p. 2, 2010.
    [18] S. J. Barnett, "Magnetization by Rotation," Physical Review, vol. 6, no. 4, pp. 239-270, 10 1915.
    [19] F. Bloch, "Nuclear Induction," Physical Review, vol. 70, no. 7-8, pp. 460-474, 1946.
    [20] A. Kastler, "Optical Methods of Atomic Orientation and of Magnetic Resonance," Journal of the Optical Society of America (JOSA), vol. 47, no. 6, pp. 460-465, 6 1957.
    [21] B. D. Leete, "Apparatus for Measuring Angular Motion". US Patent 2720625, 11 10 1955.
    [22] H. Haken, H. C. Wolf, Atomic and Quantum Physics: an Introduction to the Fundamentals of Experiment and Theory, New York: Springer, 1984.
    [23] Qiang Shu, Ming-zhi Zhu, Bao-xu Wang, Wen-kai Wu, "Modeling and Simulation of Nuclear Magnetic Resonance Gyroscope," 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST), pp. 367-371, 2017.
    [24] D. A. Steck, "Rubidium 87 D Line Data," 2016. [Online]. Available: http://steck.us/alkalidata.
    [25] Hai-feng Dong, Yang Gao, "Comparison of Compensation Mechanism Between an NMR Gyroscope and an SERF Gyroscope," IEEE Sensors Journal, vol. 17, no. 13, pp. 4052-4055, 2017.
    [26] Jie Qin, Shi-lin Wang, Pu-ze Gao, Yu-hong Wang, Wen-fa Han, "Advances in Nuclear Magnetic Resonance Gyroscope," Navigation Positioning & Timing, vol. 1, no. 2, pp. 64-69, 2014.
    [27] W. Y. Zhou, Xin-sheng Wang, Y. C. Deng, Yun-peng Liu, "Research on Influence of Pump Laser Frequency Fluction on the Bias Drift of Nuclear Magnetic Resonance Gyro," 2017 24th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), pp. 1-5, 2017.
    [28] Ying-ying Li, Jie Yuan, Zhi-guo Wang, Jian-wen Song, Guang-zong Xiao, "Modeling
    of Magnetic Fields for Application in Nuclear Magnetic Resonance Gyroscopes," Proceedings of 2013 2nd International Conference on Measurement, Information and Control, vol. 1, pp. 36-40, 2013.
    [29] E. A. Donley, "Nuclear Magnetic Resonance Gyroscopes," SENSORS, 2010 IEEE, pp. 17-22, 2010.
    [30] J.E. Sansonetti and W.C. Martin, "Handbook of Basic Atomic Spectroscopic Data - NIST Standard Reference Database 108," NIST, 11 2013. [Online]. Available: https://physics.nist.gov/PhysRefData/Handbook/periodictable.htm. [Accessed 12 6 2019].
    [31] Thad G. Walker, Anna Korver, Daniel Thrasher, and Michael Bulatowicz, "Synchronously Pumped NMR Gyro," 2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS) Proceedings, pp. 1-4, 2015.
    [32] M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, "Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas," Physical review letters, vol. 111, no. 10, p. 102001, 3 9 2013.
    [33] Z. Wu, W. Happer, M. Kitano, and J. Daniels, "Experimental Studies of Wall Interactions of adsorbed spin-polarized 131Xe Nuclei," Physical Review A, vol. 42, no. 5, pp. 2774-2784, 1 9 1990.
    [34] Wei Huang, Yuan-xing Liu, Yu He, Yan Wang, Li-jun Huo, "Research on the Influences of Pumped Laser Power on Bias Drift of Nuclear Magnetic Resonance Gyro," 2017 24th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), pp. 1-5, 10 2017.
    [35] Xin Yi, Zhi-guo Wang, Tao Xia, Di Xu, Kai-yong Yang, "Research on temperature field in the vapor cell of nuclear magnetic resonance gyroscope," Chinese Optics, vol. 9, no. 6, pp. 671-677, 12 2016.
    [36] Radwan M. Noor , Student Member, IEEE, and Andrei M. Shkel , Fellow, IEEE, "MEMS Components for NMR Atomic Sensors," Journal of Microelectromechanical Systems, vol. 27, no. 6, pp. 1148-1159, 12 2018.
    [37] R. Beiranvand, "Analyzing the Uniformity of the Generated Magnetic Field by a Practical One-dimensional Helmholtz Coils System," Review of Scientific Instruments, vol. 84, no. 7, p. 075109, 17 7 2013.
    [38] Bin-Quan Zhou, Jie-Peng Hao, Xiao-Yang Liang, Wei Quan, Gang Liu, "Experimental Study on Electromagnetic Noise Suppression of Atomic Spin Gyroscope Heating Chamber," Journal of Beijing University of Aeronautics and Astronautics, vol. 44, no. 1, pp. 36-42, 1 2017.
    [39] E. Jesper Eklund, Student Member, and Andrei M. Shkel, Associate Member, "Glass Blowing on a Wafer Level," Journal of Microelectromechanical Systems, vol. 16, no. 2, pp. 232-239, 4 2007.
    [40] Dmitry Budker, Derek F. Jackson Kimball, Optical Magnetometry, New York: Cambridge University Press, 2013.

    無法下載圖示 校內:2023-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE