簡易檢索 / 詳目顯示

研究生: 陳浩堂
Chen, Hao-Tang
論文名稱: 以生命週期評估法搭配HEAT模型分析大眾運輸取代機車之環境與經濟共效應:以高雄市為例
Life cycle assessment combined with HEAT model analysis of the environmental and economic co-effects of public transportation replacing motorcycles: a case study of Kaohsiung City
指導教授: 林心恬
Lin, Hsin-Tien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 機車綠色運輸溫室氣體共效益益本比分析
外文關鍵詞: Motorcycle, Green Transportation, Greenhouse Gas, Co-benefits, Cost-Benefit Analysis
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇研究探討了使用大眾運輸和公共自行車替代機車對環境和人體健康的影響。機車的使用對環境產生了大量的溫室氣體排放和空氣污染物(PM2.5、NOX、SOX),而轉而使用大眾運輸和公共自行車不僅可以減少這種排放,還可以增加人們的運動量,提高身體健康水平,降低患病風險。除此之外,使用大眾運輸和單車也可以降低民眾的空氣污染暴露程度,減少對人體的危害。再者,機車在交通事故方面有著較高的死亡率,改為搭乘大眾運輸可以降低因事故而死亡的人數。為了更加全面地評估這種轉變對環境和人體健康的影響,本研究使用HEAT v4.2( Health Economic Assessment tool)模型,從體育活動、空氣污染、交通事故和溫室氣體排放等四個面向進行評估,並將這些影響貨幣化以進行比較。另外本研究還設定了不同的情境,如公車、捷運和公共自行車替代機車通勤,以便更好地評估效益。最後,本研究通過計算益本比來比較不同情境下的效益和成本,以便在政策制定方面提供參考。總的來說,使用大眾運輸和單車替代私人載具不僅可以減少溫室氣體排放,還可以提高人體健康水平和降低空氣污染,是一個對環境和人類健康都有益的選擇。經過本研究的評估,發現替代機車使用為公車、捷運和公共自行車通勤可以帶來多重效益。在經濟方面,其中溫室氣體減量效益並不高,而其他體育活動、空氣污染、交通事故三個面向所預防減少的死亡人數具有較高的效益,顯示將這些效益納入成本效益評估是必要且重要的。此外,以公共自行車為主的替代方案益本比約為4.67,優勢明顯,因此未來應以此種方案為主導的交通建設及政策方向,才能取得更好的收益。

    This article examines the impact of using public transportation and public bicycles to replace motorcycles on the environment and human health. The use of motorcycles produces a large amount of greenhouse gas emissions and air pollutants (PM2.5, NOX, SOX), while using public transportation and bicycles can not only reduce such emissions, but also increase people's physical activity, improve their health levels, and reduce the risk of illness. In addition, using public transportation and bicycles can also reduce people's exposure to air pollution, minimizing harm to human health. To comprehensively evaluate the impact of this transition on the environment and human health, this study uses the HEAT v4.2 (Health Economic Assessment Tool) model to assess four dimensions: physical activity, air pollution, traffic accidents, and greenhouse gas emissions, and monetizes these impacts for comparison. The study also sets different scenarios, such as buses, MRT, and public bicycles replacing motorcycles for commuting, to better evaluate benefits. Finally, this study compares benefits and costs in different scenarios by calculating the benefit-cost ratio to provide reference for policy-making. In summary, using public transportation and bicycles to replace private vehicles can not only reduce greenhouse gas emissions but also improve human health and reduce air pollution, making it a beneficial choice for both the environment and human health. After evaluation, the study found that replacing motorcycles with buses, subways, and public bicycles can bring multiple benefits. Among them, the benefits of reducing greenhouse gas emissions are not high, while the benefits of preventing deaths in the three dimensions of physical activity, air pollution, and traffic accidents are high, indicating that incorporating these benefits into cost-benefit evaluations is necessary and important. In addition, the benefit-cost ratio of a public bicycle-based alternative is approximately 4.67, indicating a clear advantage, so future transportation construction and policy should be oriented towards this approach to achieve better benefits.

    一、研究背景與動機 1 1.1 我國溫室氣體減量目標與目前狀況 1 1.2 我國交通部門溫室氣體排放量 2 1.3 我國民眾日常使用載具狀況 3 1.4 機車對環境的傷害 5 1.5 增加綠色運輸的效益 5 1.6 研究目的與動機 6 二、文獻探討 8 2.1 生命週期評估(LCA) 8 2.1.1 軌道系統LCA 9 2.1.2 道路系統LCA 10 2.1.3 公共自行車LCA 11 2.2私人載具減量的效益 12 2.1.1 近年內國際交通的共效益評估 12 2.2.2 Health Economic Assessment Tool (HEAT) 13 2.3 成本效益評估 13 2.4 各地區民眾日常使用交通運具概況 15 三、研究方法 21 3.1 研究架構 21 3.2 情境假設 23 3.3 載具數量評估 27 3.4 溫室氣體評估 28 3.4.1 軌道系統與參考資料來源 28 3.4.2 道路系統與參考資料來源 30 3.4.3 公共自行車與參考資料來源 30 3.4.4 生命週期評估之計算方法 31 3.5 綠運輸之共效益 33 3.5.1體育活動 34 3.5.2空氣污染 34 3.5.3交通事故 36 3.6 各項載具的每年投資成本 37 3.6.1公車每年投資成本 37 3.6.2捷運每年投資成本 37 3.6.3公共自行車每年投資成本 38 3.7 關鍵假設 40 四、結果與討論 41 4.1 不同情境下減少機車之溫室氣體減碳效益 41 4.2 不同情境下減少機車之相關共效益 42 4.2.1 體育活動 42 4.2.2 空氣污染 43 4.2.3 交通事故 48 4.2.4 總效益 49 4.3不同情境下減少機車的益本比分析 50 4.3研究限制與未來發展方向 53 4.3.1 數據的時效性 53 4.3.2 數據來源的差異性和不確定性 53 4.3.3 載具使用過於單一化及理想化 53 五、結論與建議 55 5.1 結論 55 5.2 建議 56 六、參考文獻 57 七、附錄 63

    1. YouBike微笑單車. 高雄市地區租賃次數總計. 2023.
    2. 台北市政府捷運工程局. 臺北都會區大眾捷運系統環狀線東環段暨周邊土地開發可行性研究報告書. 2020; Available from: https://www.dorts.gov.taipei/News_Content.aspx?n=4027AA15756300C8&sms=4E98D53D04E37D56&s=D86BDBC7EFC40645.
    3. 台灣中油股份有限公司. 汽、柴油歷史價格. 2023; Available from: https://www.cpc.com.tw/historyprice.aspx?n=2890.
    4. 交通部統計處. 106年自行車使用狀況調查. 2018; Available from: https://srda.sinica.edu.tw/datasearch_detail.php?id=2844.
    5. 交通部統計處. 109 年民眾日常使用運具狀況調查摘要分析. 2021.
    6. 交通部統計處. 109年機車使用狀況調查報告. 2021.
    7. 交通部統計調查網. 道路交通事故率. 2021; Available from: https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100.
    8. 行政院主計總處. 八十九年台灣地區社會發展趨勢調查統計結果摘要 中華民國統計資訊網. 2000.
    9. 行政院主計總處綜合統計處. 國情統計通報(第161號). 2020.
    10. 行政院教育部體育署. 自行車道整體路網串連建設計畫. 2012.
    11. 行政院環保署. 109年空氣品質監測. 2020.
    12. 行政院環境保護署. 我國國家溫室氣體排放清冊報告(2022年版). 2022; Available from: https://unfccc.saveoursky.org.tw/nir/tw_nir_2022.php.
    13. 行政院環境保護署. 空氣污染物排放清冊TEDs 11.1排放量統計數據. 2020; Available from: https://air.epa.gov.tw/EnvTopics/AirQuality_6.aspx.
    14. 吳欣芳, 乘客搭乘高雄捷運滿意度影響因素之分析, in 經濟學研究所. 2013, 國立中山大學: 高雄市. p. 87.
    15. 宋威穎 and 林宜甲. 以引力模式改善高雄市公車系統服務範圍之證實研究. 城市學學刊. 2016.
    16. 李恒綺, et al., 公共腳踏車使用者特性及偏好分析-以高雄市C-Bike為例. 運輸計劃季刊, 2016. 45(4): p. 331-355.
    17. 国土交通省. 第Ⅰ部 令和2(2020)年度 交通の動向 第 Ⅰ 部. 2020.
    18. 林浩瑋, 悠遊卡大數據應用於大眾運輸乘客旅運型態之研究, in 運輸管理學系碩士班. 2016, 淡江大學: 新北市. p. 105.
    19. 林嘉慧, 大眾運輸導向發展引導都市空間再造之策略研究, in 建築及都市計畫研究所. 2008, 中國文化大學: 台北市. p. 166.
    20. 高雄市政府交通局. 109年交通統計年報-高雄市公車路線營運概況. 2020.
    21. 高雄市政府交通局. 高雄都會區大眾捷運系統各站旅運量. 2020.
    22. 高雄市政府捷運工程局. 高雄都會區大眾捷運系統都會線(黃線)綜合規劃成果報告. 2020.
    23. 高雄捷運股份有限公司. 高雄捷運企業社會責任報告書. 2012; Available from: https://csrone.com/reports/521.
    24. 國家發展委員會. 臺灣 2050 淨零排放路徑及策略總說明. 行政院. 2022; Available from: https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76.
    25. 張艾琦. 從指標數據看理想交通運輸體系. 國家實驗研究院科技政策研究與資訊中心. 2019.
    26. 莊畫晴, 台北市公共運輸旅運行為之研究, in 地政學系. 國立政治大學: 台北市. p. 171.
    27. 黃俊良, 臺北市公共自行車系統旅次特性分析, in 運輸管理學系碩士班. 2016, 淡江大學: 新北市. p. 106.
    28. 楊伊萍, et al. 陸路運輸業能源消耗及溫室氣體排放推估及評估指標研析. 交通部運輸研究所綜合技術組. 2018; Available from: https://www.iot.gov.tw/cp-78-9386-6faeb-1.html.
    29. 嘉義市政府. 嘉義市公共自行車租賃系統建置及營運管理評估案. 2015; Available from: https://www.chiayi.gov.tw/News_Content.aspx?n=1284&s=614108.
    30. 劉宜君. 生命週期評估概念在公共政策應用之探討. 國家發展委員會. 2019; Available from: https://www.ndc.gov.tw/Content_List.aspx?n=E423490A900BDF9B.
    31. 顏進儒, 運輸學. 2015: 台灣五南圖書出版股份有限公司.
    32. Administration, U.S.D.o.T.F.H. The Transportation Future: Trends, Transportation, and Travel. 2021.
    33. Ali, A., et al., Epidemiological root cause analysis of noise and physio‐psycho impacts related to motorcycle road accidents. J. Sci. Res. Dev, 2016. 3(5): p. 150-156.
    34. Althoff, T., et al., Large-scale physical activity data reveal worldwide activity inequality. Nature, 2017. 547(7663): p. 336-339.
    35. Banar, M. and A. Özdemir, An evaluation of railway passenger transport in Turkey using life cycle assessment and life cycle cost methods. Transportation Research Part D: Transport and Environment, 2015. 41: p. 88-105.
    36. Benardos, A., N. Sourouvali, and A. Mavrikos, Measuring and benchmarking the benefits of Athens metro extension using an ex-post cost benefit analysis. Tunnelling and Underground Space Technology, 2021. 111: p. 103859.
    37. Bullock, C., F. Brereton, and S. Bailey, The economic contribution of public bike-share to the sustainability and efficient functioning of cities. Sustainable cities and society, 2017. 28: p. 76-87.
    38. Chang, Y., et al., The energy use and environmental emissions of high-speed rail transportation in China: A bottom-up modeling. Energy, 2019. 182: p. 1193-1201.
    39. Chester, M., et al., Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals. Environmental Research Letters, 2013. 8(1): p. 015041.
    40. Cox, B.L. and C.L. Mutel, The environmental and cost performance of current and future motorcycles. Applied Energy, 2018. 212: p. 1013-1024.
    41. Creutzig, F., R. Mühlhoff, and J. Römer, Decarbonizing urban transport in European cities: four cases show possibly high co-benefits. Environmental research letters, 2012. 7(4): p. 044042.
    42. Del Pero, F., et al., Life Cycle Assessment of a heavy metro train. Journal of Cleaner Production, 2015. 87: p. 787-799.
    43. Ding, N., et al., Life cycle assessment of car sharing models and the effect on GWP of urban transportation: A case study of Beijing. Science of the total environment, 2019. 688: p. 1137-1144.
    44. Doll, C.N. and O. Balaban, A methodology for evaluating environmental co-benefits in the transport sector: application to the Delhi metro. Journal of Cleaner Production, 2013. 58: p. 61-73.
    45. EPA, U.S.E.P.A.U. Mortality Risk Valuation. 2023; Available from: https://www.epa.gov/environmental-economics/mortality-risk-valuation.
    46. Government, S.M. Seoul Public Transportation - Metropolis. 2012.
    47. Guinee, J.B., et al., Life cycle assessment: past, present, and future. 2011, ACS Publications.
    48. Huangfu, P. and R. Atkinson, Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis. Environment international, 2020. 144: p. 105998.
    49. Kahlmeier, S., et al., Health economic assessment tool (HEAT) for walking and for cycling: Methods and user guide on physical activity, air pollution, injuries and carbon impact assessments. 2017.
    50. Kato, H., et al., A life cycle assessment for evaluating environmental impacts of inter-regional high-speed mass transit projects. Journal of the Eastern Asia Society for Transportation Studies, 2005. 6: p. 3211-3224.
    51. Kawamoto, R., et al., Estimation of CO2 emissions of internal combustion engine vehicle and battery electric vehicle using LCA. Sustainability, 2019. 11(9): p. 2690.
    52. Knupfer, S.M., V. Pokotilo, and J. Woetzel. Elements of success: Urban transportation systems of 24 global cities. McKinsey&Company. 2018.
    53. Korea, I.y. Subwas:VisitKorea Subways. 2022; Available from: https://english.visitkorea.or.kr/enu/TRP/TP_ENG_6.jsp.
    54. Kärnä, P., Carbon footprint of the raw materials of an urban transit bus: case study: diesel, hybrid, electric and converted electric bus. 2012.
    55. Korytárová, J. and P. Papežíková, Assessment of large-scale projects based on CBA. Procedia Computer Science, 2015. 64: p. 736-743.
    56. Leichter, M., I. Hackenhaar, and A. Passuello, Public Bus Transportation System Environmental Impact Projections Regarding Different Policy Scenarios—A LCA Study. Infrastructures, 2021. 6(12): p. 169.
    57. Leuenberger, M. and R. Frischknecht, Life cycle assessment of two wheel vehicles. ESU-Services Ltd.: Uster, Switzerland, 2010.
    58. Liu, M., S. Jia, and X. He, A quota-based GHG emissions quantification model for the construction of subway stations in China. Journal of Cleaner Production, 2018. 198: p. 847-858.
    59. Luo, H., et al., Comparative life cycle assessment of station-based and dock-less bike sharing systems. Resources, Conservation and Recycling, 2019. 146: p. 180-189.
    60. Mao, G., et al., How can bicycle-sharing have a sustainable future? A research based on life cycle assessment. Journal of Cleaner Production, 2021. 282: p. 125081.
    61. Mao, R., et al., Global urban subway development, construction material stocks, and embodied carbon emissions. Humanities and Social Sciences Communications, 2021. 8(1): p. 1-11.
    62. McKinley, G., et al., Quantification of local and global benefits from air pollution control in Mexico City. 2005, ACS Publications.
    63. Miatto, A., et al., The urbanisation-environment conflict: Insights from material stock and productivity of transport infrastructure in Hanoi, Vietnam. Journal of environmental management, 2021. 294: p. 113007.
    64. Moriguchi, Y. Inventory analysis and impact assessment towards comprehensive LCA of automobiles. in Proc. of the 3rd International Conference on EcoBalance. 1998.
    65. Orellano, P., J. Reynoso, and N. Quaranta, Short-term exposure to sulphur dioxide (SO2) and all-cause and respiratory mortality: A systematic review and meta-analysis. Environment International, 2021. 150: p. 106434.
    66. Partnership, I.C.A. EU Emissions Trading System(EU ETS). 2022; Available from: https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en.
    67. Potera, C., Air pollution: Asia’s two-stroke engine dilemma. 2004, National Institue of Environmental Health Sciences.
    68. Qiao, Q., et al., Life cycle cost and GHG emission benefits of electric vehicles in China. Transportation Research Part D: Transport and Environment, 2020. 86: p. 102418.
    69. Rahman, A., Estimation of direct and indirect energy requirements for bus rapid transit (BRT) and light rail transit (LRT). 2009, Carleton University.
    70. Rojas-Rueda, D., et al., Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: a health impact assessment study. Environment international, 2012. 49: p. 100-109.
    71. Schneider, F., et al., Comparative Life Cycle Assessment (LCA) on battery electric and combustion engine motorcycles in Taiwan. Journal of Cleaner Production, 2023: p. 137060.
    72. Shah, K.J., et al., Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. Journal of Cleaner Production, 2021. 326: p. 129392.
    73. Sheth, A. and D. Sarkar, Life Cycle Cost Analysis for Electric vs Diesel Bus Tansit in an Indian Scenario. Life, 2019. 10(1).
    74. Sánchez, J.A.G., et al., Impact of Spanish electricity mix, over the period 2008–2030, on the life cycle energy consumption and GHG emissions of electric, hybrid diesel-electric, fuel cell hybrid and diesel bus of the Madrid transportation system. Energy conversion and management, 2013. 74: p. 332-343.
    75. Sælensminde, K., Cost–benefit analyses of walking and cycling track networks taking into account insecurity, health effects and external costs of motorized traffic. Transportation Research Part A: Policy and Practice, 2004. 38(8): p. 593-606.
    76. Suluh, M.I.A., H. Sutanto, and I. Iskandar, Life cycle assessment of construction phase of MRT Jakarta track structure. Int J Appl Eng Res, 2019. 14(15): p. 3406-3408.
    77. TInnGo. Deliverable 7.2-Modelling and forecasting of gender mobility behaviour for pilot cities. 2020.
    78. Tsai, D.-H., Y.-H. Wu, and C.-C. Chan, Comparisons of commuter's exposure to particulate matters while using different transportation modes. Science of the total environment, 2008. 405(1-3): p. 71-77.
    79. Watson, R., B. Abbassi, and Z.S. Abu-Hamatteh, Life cycle analysis of concrete and asphalt used in road pavements. Environmental Engineering Research, 2020. 25(1): p. 52-61.
    80. Woodcock, J., et al., Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. The lancet, 2009. 374(9705): p. 1930-1943.
    81. Xia, T., et al., Traffic-related air pollution and health co-benefits of alternative transport in Adelaide, South Australia. Environment international, 2015. 74: p. 281-290.
    82. Yap, J. Singapore's Approach to a Car‐Lite City. Land Transport Authority, Singapore. 2020.

    無法下載圖示 校內:2027-06-21公開
    校外:2027-06-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE