簡易檢索 / 詳目顯示

研究生: 王復民
Wang, Fu-Ming
論文名稱: 薄膜太陽能電池溫度模擬與散熱系統之研究
Temperature Simulation and Cooling System for Thin Film Solar Cells
指導教授: 黃聖杰
Hwang, Sheng-Jye
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 73
中文關鍵詞: BIPV薄膜太陽能電池溫度模擬散熱系統
外文關鍵詞: BIPV, a-si, temperature simulation, cooling system
相關次數: 點閱:133下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將先由聯相光電5F BIPV(Building-Integrated Photovoltaic)外牆為實驗基礎,針對Insulating Glass模組進行溫度預測,並且把模擬結果與實驗進行比對,然後模擬在不同風速及日照量底下模組的溫度分布。
    太陽光電系統發電量,與太陽能電池的面積和太陽輻射量成正比,然而當PV溫度上升時發電效率則會下降。一般非晶矽薄膜太陽能電池的效率溫度係數為-0.28%/oC,意即每當溫度上升一度,則效率將會下降0.28%,此處提到的效率(100%)為太陽能電池在標準測試狀況下發電之瓦數。為了提升太陽能電池的發電效率,設計一散熱系統是必需的。本研究在能準確預測BIPV的溫度分布之後,將進一步的利用散熱系統來提升太陽能電池的發電量。
    當溫度模擬模型建立完成之後,在溫度模擬模型之邊界條件上考慮風場速度,並建立出散熱模擬模型,此模擬將與實驗結果進行比對,已確認此模型具一定準確性。散熱系統之概念為利用自然無動力通風球,透過環境風速推動,將環境中之空氣導入空氣層中,使空氣層中空氣流動並將熱空氣排出空氣層,以達散熱效果。

    This research based on NexPower 5th BIPV, and simulating the temperature for Insulating Glass module. Temperature distribution was simulated with different wind speeds and Solar irradiation. The simulation results were very consistent with experiments
    The electrical energy of Solar system was proportional to area of the Solar battery and Solar irradiation. However, the efficiency decreased when PV temperature increased. The temperature coefficient of a-si (amorphous silicon) thin film solar cell was -0.28 %/oC. It means that when cell temperature increased one degree, the efficiency will decrease 0.28%. In order to improve the efficiency of solar cell, the designing a radiator system was essential. When the simulation can predict BIPV temperature distribution accurately, the cooling system will be used to increase the electrical energy of solar cell.
    After established the temperature simulation module, modifying the boundary conditions of module to built cooling simulation module was continued. The result of cooling simulation module was compared with experiment to confirm that accuracy. The cooling system was made from the ventilation ball to make air flow and exhaust the hot air. The ventilation ball was drove by wind.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究目的與實驗架構 5 第二章理論基礎 8 2-1 太陽能電池原理 8 2-2 基礎熱傳學理論 10 2-2-1 熱傳導 10 2-2-2 熱對流 11 2-2-3 熱輻射 12 2-3 有限元素分析流程 15 2-3-1 前處理 15 2-3-2 求解 16 2-3-3 後處理 17 2-4 數值分析理論 19 2-4-1 能量方程式 19 2-4-2 Boussinesq方程式 19 2-4-3 DO輻射模型 21 2-4-4 Opaque Wall理論 22 2-4-5 Semi-Transparent Wall理論 23 2-4-6 熱對流係數 24 第三章有限元素分析-溫度模擬 25 3-1 溫度模擬模型 25 3-1-1 幾何建立 25 3-1-2 材料性質建立 28 3-1-3 邊界條件設定 29 3-1-3-1 室外玻璃表面之邊界設定 30 3-1-3-2 室內玻璃表面之邊界設定 30 3-1-3-3 太陽能電池邊緣之邊界設定 31 3-1-3-4 太陽能電池各層接觸面之邊界設定 31 3-1-4 分析結果 32 3-2 實驗設備與實驗方法 40 3-3 模擬與實驗結果比對 45 第四章散熱系統架設 51 4-1 散熱模擬 51 4-2 模組架設 54 4-3 實驗方法 59 4-4 模擬與實驗結果比對 63 4-5 散熱模擬之應用 67 第五章結論與未來展望 69 5-1 結果與討論 69 5-2 未來展望 70 參考文獻 71 自述 73

    [1]http://www.kson.com.tw/chinese/study_23-8.htm
    [2]B.J. Brinkworth and M. Sandberg “Design procedure for cooling ducts to minimise efficiency loss due to temperature rise in PV arrays,” SOLAR ENERGY, vol. 80, pp.89-103, 2006.
    [3]L. Liao, A.K. Athienitis, L. Candanedo, K. W. Park, Y. Poissant and M. Collins, “Numerical and Experimental Study of Heat Transfer in a BIPV-Thermal System,” ASME Journal of Solar Energy Engineering, Vol.129, pp.423-430, November 2007.
    [4]Diarra D.C, Candanedo L, Harrison S.J A, and Athienitis, “An experiment investigation of air flow and heat transfer inroff-integrated photovoltaics thermal system,”
    [5]Michael J. Wilson and Manosh C. Paul, “Effect of mounting geometry on convection occurring under a photovoltaic panel and the corresponding efficiency using CFD,” SOLAR ENERGY, Vol.85, pp.2540-2550, July 2011.
    [6]Heinrich Manz, “Numerical simulation of heat transfer by natural convection in cavities of facade elements,” Energy and Buildings, Vol.35, pp. 305-311, 2003.
    [7]A. Trombe, A. Suleiman, and Y. Le Maoult, “Use of an inverse method to determine natural convection heat transfer coefficients in unsteady state,” ASME Journal of Solar Energy Engineering, Vol.125, pp. 1017-1026, 2003.
    [8]http://forum.netcontrol.tw/images/solar%20cell3.gif
    [9]http://www.pcc.gov.tw/epaper/9903/power_06.htm
    [10]http://pic.pimg.tw/cuboy/4a765289f21cf.jpg
    [11]http://www.mittrchinese.com/newsUploadImg/2011/06/13076877781687.jpg
    [12]http://cc.asia.edu.tw/news/980105%E7%B6%A0%E8%83%BD%E8%88%87%E5%85%89%E9%9B%BB%E7%A0%94%E8%A8%8E%E6%9C%83%E8%B3%87%E6%96%99/%E4%B8%8B%E4%B8%96%E4%BB%A3%E5%A4%AA%E9%99%BD%E9%9B%BB%E6%B1%A0.pdf
    [13]Frank P. Incropera and David P. DeWitt, “Introduction to Heat Trandfer,” A Wiley-Interscience publication, New York, 2001.
    [14]ANSYS DesignModeler Training Courses, Release 12.0,ANSYS, Inc., 2009.
    [15]ANSYS CFX Tutorials, Release 13.0,ANSYS, Inc., 2010.
    [16]ANSYS FLUENT Theory Guide, Release 13.0,ANSYS, Inc., 2010.
    [17]John A. Duffie, William A. Beckman, “Solar Engineering of Thermal Processes,” A Wiley-Interscience publication, New York, 2005.
    [18]D. Curcija, W. P. Goss, “New correlations for convective heat transfer coefficient on indoor fenestration surfaces-compilation of more recent work,” Proceedings of Thermal Performance of the Exterior Envelopes of Buildings VI, pp. 567-572, 1995.

    下載圖示 校內:2022-12-31公開
    校外:2022-12-31公開
    QR CODE