| 研究生: |
林勇名 Lin, Yong-ming |
|---|---|
| 論文名稱: |
Ba[Mg(1-x)/3Cox/3Nb2/3]O3 陶瓷材料的結構與微波介電性質 Crystal Structure and Microwave Dielectric Property Relations in Ba[Mg(1-x)/3Cox/3Nb2/3]O3 Ceramics |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 有序 、無序 、微波介電陶瓷 、鈣鈦礦 |
| 外文關鍵詞: | ceramic, order, perovskite, dielectric, microwave, disorder |
| 相關次數: | 點閱:76 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複合鈣鈦礦陶瓷材料系統由於具有高介電常數 (εr) 、高品質因數 (Q) 和趨近於零的共振頻率溫度係數 (τf) ,而被廣泛應用於微波介電材料的研究上,然而大多數的研究針對外在因素對介電性質的影響,像是藉由製程提升密度來增進介電性質以及二次相 (secondary phase) 對介電性質的影響等,鮮少有研究探討成分內在因素與介電性質的相互關係。
本研究探討以 Co2+ (0~100 mol%) 添加於 Ba(Mg1/3Nb2/3)O3 複合鈣鈦礦系統對結構與性質的影響,利用X光粉末繞射之結果,並進行 Rietveld 晶體結構精算、拉曼光譜量測與穿透式電子顯微鏡 (TEM) 觀察,配合微波介電性質量測知結果,發現隨著 Co2+ 的添加,εr 有增加的趨勢, τf 則有著從正下降到負的趨勢並有趨近於零的τf ,而 Qxf 則出現了先上升而後下降的趨勢。
綜合各項結果顯示, Ba[Mg(1-x)/3Cox/3Nb2/3]O3 系統的 B-site 有序程度受到 B’-site 陽離子取代出現變化,推測由於 Co2+ 的添加造成 B-site 陽離子有序排列程度的改變,同樣也影響了燒結體的燒結溫度,進而影響了密度,且對 Qxf 同時有了外在與內在因素的影響。
Complex perovskite ceramics with high relative permittivity (εr) , high quality factor (Q) , and low temperature coefficient of resonator frequency (τf) , are investigated on microwave dielectric materials extensively. Nevertheless, most studies focus on the relations between microwave dielectric properties and extrinsic factors ( density, secondary phases etc.) , a few of researches investigate the phenomena between intrinsic factors and microwave dielectric properties.
This study investigates the effect of Co2+ substitution on the crystal structure in a Ba(Mg1/3Nb2/3)O3 (BMN) complex perovskite system using X-ray powder diffractiometer, Raman spectroscopy, and transmission electron microscopy (TEM) ; all the microwave dielectric properties are characterized in the microwave range. As the increasing of Co2+ substitution, the study shows εr increases, τf decreases including reverse sign and nero zero of τf can be obtained. And quality factor increased from x = 0 to x = 0.5, but quality factor decreased after x = 0.5.
Relying on the results, the ordering degree of B-site cations in the BMCN system is changed with the substitution of B-site cations. We speculate that ordering degree, sintering temperature, and relative density in the BMCN system are changed with Co2+ substitution, and these extrinsic and intrinsic factors all make quality factor reduced substantially.
[1] R. D. Richtmyer, “Dielectric Resonator,” J. Appl. Phys., 10, 391-398 (1939).
[2] S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonator,” IEEE Trans. On MTT, MTT-16, 217-218 (1968).
[3] Chun-Te Lee, Yi-Chang Lin, Chi-Yuen Huang, Che-Yi Su, and Ching-Li Hu, “Cation Ordering and Dielectric Characteristics in Barium Zinc Niobate,” J. Am. Ceram. Soc., 90 [2], 483-489 (2007).
[4] S. Nomura, “Ceramics for Microwave Dielectric Resonator,” Ferroelectrics, 49, 61-70 (1983).
[5] Cheng-Chyi You, Cheng-Liang Hunag, Chung-Chuang Wei, and Jin-Wen Hunag, “Improved High-Q Dielectric Resonator Sintered at Low Firing Temperature,” Jpn. J. Appl. Phys., 34, 1911-1915 (1995).
[6] Cheol-Woo Ahn, Sahn Nahm, Yun-Soo Lim, Woong Choi, Hyun-Min Park, and Hwack-Joo Lee, “Microstructure and Microwave Dielectric Properties of Ba(Co1/3Nb2/3)O3 Ceramics,” Jpn. J. Appl. Phys., 41, 5277-5280 (2002).
[7] H. Yoshioka, “Ordering of Cations in Ba(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3,” Bull. Chem. Soc. Jpn., 60, 3433-3434 (1987).
[8] 李俊德,複合鈣鈦礦型結構之鈮氧化物陶瓷的結構與微波介電性質之關係,國立成功大學資源工程學系研究所博士論文,2007
[9] N. Setter and L. E. Cross, “The Contribution of Structural Disorder to Diffuse Phase Transitions in Ferroelectrics,” J. Mater. Sci., 15, 2478-2482 (1980).
[10] F. Galasso and W. Darby, “Ordering of the Octahedrally Coordinated Cation. Position in the Perovskite Structure,” J. Phys. Chem., 66, 131-132 (1962).
[11] A. M. Glazer, “The Classification of Tilted Octahedra in Perovskite,” Acta Cryst., B28, 3384-3392 (1972).
[12] A. M. Glazer, “Simple Ways of Determining Perovskite Structure,” Acta Cryst., A31, 756-762 (1975).
[13] H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. H. Paik, S. Nahm, and J. D. Byun, “Microstructure of Lanthanum Magnesium Niobate at Elevate Temperature,” J. Am. Ceram. Soc., 83 [4], 943-945 (2000).
[14] H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. H. Paik, S. Nahm, and J. D. Byun, “Two Types of Domain Boundaries in Lanthanum Magnesium Niobate,” J. Am. Ceram. Soc., 83 [11], 2875-2877 (2000).
[15] O. Prytz and J. Tafto, “Accurate Determination of Orientation Relationships between Ferroelastic Domains: The Tetragonal to Monoclinic Transition in LaNbO4 as an example,” Acta Mat., 53, 297-302 (2005).
[16] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., John Wiley and Sons, New York (1976).
[17] C. G. Bergeron and S. H. Risbud, Introduction to Phase Equilibria in Ceramics, The American Ceramic Society Inc., Columbus (1984)
[18] O. Muller and R. Roy, The Major Ternary Structural Families, Springer, New York (1974).
[19] I. M. Reaney, E. L. Colla, and N. Setter, “Dielectric and Structural Characteristics of Ba and Sr-based Complex Perovskite as a Function of Tolerance Factor,” Jpn. J. Appl. Phys.,33, 3984–3990 (1994).
[20] 黃恩萍,角閃石類礦物之拉曼光譜研究,國立成功大學地球科學研究所碩士論文,2003
[21] I. M. Reaney and David Iddles, “Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks,” J. Am. Ceram. Soc., 89 [7], 2063-2072 (2006).
[22] David I. Woodward and I. M. Reaney, “Electron Diffraction of Tilted Perovskites,” Acta Cryst., B61, 387-399 (2005).
[23] I. G. Siny, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “ Raman Spectroscopy of Mg-Ta Order-Disorder in Ba(Mg1/3Ta2/3)O3,” J. Phys. Chem. Solids, 59 [2], 181-195 (1998).
[24] B. K. Kim, H. Hamaguchi, I. T. Kim, and K. S. Hong, “ Probing of 1:2 Ordering in Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 Ceramics by XRD and Raman Spectroscopy,” J. Am. Ceram. Soc., 78 [11], 3117-3120 (1995).
[25] C. T. Chia, Y. C. Chen, H. F. Cheng, and I. N. Lin, “Correlation of Microwave Properties and Normal Vibration Modes of
xBa(Mg1/3Ta2/3)O3 - (1-x)Ba(Mg1/3Nb2/3)O3 Ceramics: I. Raman Spectroscopy,” J. Appl. Phys., 94 [5], 3360-3364 (2003).
[26] A. J. Bosman and E. E. Havinga, “Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds,” Phys. Rev., 129[4], 1593–1600 (1963)..
[27] Shannon, R. D., “Dielectric Polarizabilities of Ions in Oxides and Fluorides.” J. Appl. Phys., 73, 348-366 (1993).
[28] 吳朗,電子陶瓷,全欣科技圖書 (1994)。
[29] D. K. Cheng, Field and Wave Electromagnetic, Addison Wesley, Mass., 407-412 (1989).
[30] 劉適嘉,Ba[ZrxZn(1-x)/3Nb2(1-x)/3]O3 介電陶瓷之微波特性及其應 用,國立成功大學電機工程研究所碩士論文 (2001)。
[31] D. Kajfez, “Computed Modal Field Distribution for Isolated Dielectric Resonators,” IEEE. Trans. MTT, MTT-32, 1609-1616 (1984).
[32] D. Kajfez, “Basic principle give understanding of Dielectric Wave-guides and Resonators,” Microwave System News, 13, 152-161 (1983).
[33] D. Kajfez and P. Guillon, Dielectric Resontors, Artech House, Dedham, Mass. (1979).
[34] C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure type Materials, Ph. D. Thesis, The Pennsylvania State University, U.S.A. (1990).
[35] A. C. Larson and R. B. Von Dreele, General Structure Analysis System, Los Alamos National Laboratory, Los Alamos (1988).
[36] 王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立 成功大學電機工程研究所碩士論文 (2003)。
[37] H. S. Park, K. H. Yoon and E. S. Kim, “Relationship Between the Bond Valence and the Temperature Coefficient of Resonant Frequency in the Complex Perovskite (Pb1-xCax)[Fe0.5(Nb1-yTay)0.5]O3,” J. Am. Ceram. Soc., 84 [1], 99-103 (2001).