簡易檢索 / 詳目顯示

研究生: 彭淑卿
Peng, Shu-Ching
論文名稱: 以遺傳演算法求解新產品開發活動群組問題
指導教授: 葉榮懋
Yeh, Jong-Mau
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理科學系
Department of Industrial Management Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 70
中文關鍵詞: 遺傳演算法新產品開發分群問題
外文關鍵詞: genetic algorithm, new product development, clustering problem
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自二十世紀始,企業唯有不斷地創新迎合市場需求,方能求生存,否則將在時代洪流中淘汰,亦即全世界所有企業必須參與新產品的戰爭,而在此戰爭中的勝敗,與公司之成功與生存息息相關,影響重大。
    對於新產品,今日企業面對的最重要挑戰不僅是上市時間要快,品質也要同時兼顧。因此,企業必須發展出適合且有效的程序,來管理整個創新的過程。
    由於新產品開發活動的群組屬於分群問題(clustering problem),常運用以解決該問題的方法有群集分析、數學規劃、模擬退火法、遺傳演算法、演化規劃法……等。其中遺傳演算法具有平行搜尋、跳脫區域最佳解等優點,在解決分群的問題上有著不錯的表現,本研究將使用其為解題的工具。而遺傳演算法染色體表現方式對於問題有深遠的影響,故本研究先比較四種不同的編碼方式,得到其中以星號為區隔群組的架構最能有效解決測試問題。
    故在新產品的活動群組的問題上,本研究以該染色體模式求解,期能協助管理者,提高管理的效率及掌握決策的傳遞正確性,達到新產品成功開發,以維持企業競爭力的目的。

    none

    摘要 i 誌謝 ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 緒論 1 1.1研究動機與背景 1 1.2研究目的 2 1.3研究步驟與流程 2 第二章 文獻探討 5 2.1分群問題 5 2.2分群的數學模式 7 2.3分群方法 9 2.4遺傳演算法 13 2.5新產品開發流程 19 2.6流程有序度的衡量 22 第三章 研究方法 27 3.1染色體表現模式 27 3.2 GA求解模式 30 第四章 測試與資料分析 32 4.1測試問題 32 4.2測試結果 35 4.3測試結果分析 43 第五章 新產品開發活動群組問題 44 5.1問題說明 44 5.2問題基本假設 48 5.3數學模式 49 5.4求解方法與參數設定 51 5.5有序度與群組數關係 53 5.6求解結果 54 第六章 結論與建議 57 6.1結論 57 6.2未來研究方向及建議 58 參考文獻 59

    1. 閻植林、邱菀華、陳志強(1997),「管理系統有序度評價的熵模型」,系統工程理論與實踐,第17卷,第6期,頁45-48。
    2. 李羽彬(1994),「熵-信息理論與系統工程方法論的有效性分析」,系統工程理論與實踐,第14卷,第2期,頁37-42。
    3. Al-Sultan, K. S.(1995), “A Tabu Search Approach to The Clustering Problem,” Pattern Recognition, 28(9), pp.1443-1451.
    4. Al-Sultan, K. S. and M. M. Khan(1996), “Computational Experience on Four Algorithms for The Hard Clustering Problem,” Pattern Recognition Letters, 17, pp.295-308.
    5. Anderberg, M. R.(1973), Cluster Analysis for Application, Academic Press, New York.
    6. Arabie, P., L. J. Hubert and G.. D. Soete(1996), Clustering and Classification, World Scientific, USA.
    7. Chiou, Y. C. and L. W. Lan(2001), “Genetic Clustering Algorithms,” European Journal of Operational Research, 135, pp.413-427.
    8. Cooper, R. G.(1990), “Stage-Gate Systems: A New Tool for Managing New Products,” Business Horizons, May-June, pp.44-54.
    9. Cooper, R. G.(1996), “Overhauling The New Product Process,” Industrial Marketing Management, 25(6), pp.465-482.
    10. Cowgill, M. C. and R. J. Harvey(1999), “A Genetic Algorithm Approach to Cluster Analysis,” Computers and Mathematics with Applications, 37, pp.99-108.
    11. Crawford, C. M. and C. Anthony Di Benedetto(2000), New Products Management, McGraw-Hill, USA.
    12. Gen, M. and R. Cheng(1997), Genetic Algorithms and Engineering Desigs, A Wiley-Interscience, New York.
    13. Gupta, A. K. and D. Wilemon(1988), “The Credibility-Cooperation Connection at The R&D-Marketing Interface,” Journal of Product Innovation Management, 5(1), pp.20-35.
    14. Jiang, J. H., J. H. Wang, X. Chu and R. Q. Yu(1997), “Clustering Data Using a Modified Integer Genetic Algorithm,” Analytica Chimica Acta, 354, pp.263-274.
    15. Kaufman, L. and P. J. Rousseeuw(1990), Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, New York.
    16. Krishna, K. and M. N. Murty(1999), “Genetic K-Means Algorithm,” IEEE Transactions on Systems, Man, and Cybernetic-Part B: Cybernetics, 29(3), pp.433-439.
    17. Maulik, U. and S. Bandyopadhyay(2000), “Genetic Algorithm Based Clustering Technique,” Pattern Recognition, 33, pp.1455-1465.
    18. Pinter, J. and G. Pesti(1991), “Set Partition by Globally Optimized Cluster Seed Points,” European Journal of Operational Research, 51, pp.127-135.
    19. Ralambondrainy, H.(1995), “A Conceptual Version of The K-means Algorithm,” Pattern Recognition Letters, 16, pp.1147-1157.
    20. Rao, M. R.(1971), ”Cluster Analysis and Mathematical Programming,” Journal of the American Statistical Association, 66, pp.622-626.
    21. Sarkar, M., B. Yegnanarayanan and D. Khemani(1997), “A Clustering Algorithm Using an Evolutionary Programming-Based Approach,” Pattern Recognition Letters, 18, pp.975-986.
    22. Selim, S. Z. and K. Alsultan(1991), “A Simulated Annealing Algorithm for The Clustering Problem,” Pattern Recognition, 24(10), pp.1003-1008.
    23. Song, X. M., R. J. Thieme and J. Xie(1998), ”The Impact of Cross-Functional Joint Involvement Across Product Development Stages: An Exploratory Study,” Journal of Product Innovation Management, 15, pp.289-303.
    24. Sounder, W. E., J. D. Sherman and R. D. Cooper(1998), “Environmental Uncertainty, Organizational Integration, and New Product Development Effectiveness: A Test of Contingence Theory,” Journal of Product Innovation Management, 15, pp.520-533.
    25. Trick, M. A.(1992), “A Linear Relaxation Heuristic for The Generalized Assignment Problem,” Naval Research Logistic, 39, pp.137-152.
    26. Tseng, L. Y. and S. B. Yang(2000), “A Genetic Clustering Algorithm for Data with Non-Spherical- Shape Clusters,” Pattern Recognition, 33, pp.1251-1259.
    27. Welch, J. W.(1982), “Algorithmic Complexity: Three NP-hard Problems in Computational Statistics,” Journal of Statistical Computation and Simulation, 15, pp.17-25.

    下載圖示 校內:2003-06-24公開
    校外:2003-06-24公開
    QR CODE