| 研究生: |
朱書偉 Chu, Su-Wei |
|---|---|
| 論文名稱: |
聚醯亞胺與氮化矽薄膜界面之疲勞裂紋成長行為 Fatigue Crack Propagation Behavior of the Polyimide-Silicon Nitride Thin Film Interface |
| 指導教授: |
屈子正
Chiu, Tz-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 界面 、脫層 、疲勞 、應變能釋放率 、雙懸臂樑 、聚醯亞胺 |
| 外文關鍵詞: | interface, delamination, fatigue, strain energy release rate, double cantilever beam |
| 相關次數: | 點閱:128 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先進電子元件中之多層互連結構的主要失效原因之一為環境影響、熱與機械應力導致界面脫層。由於多層互連結構採用了許多新的介電質材料及製程,其受應力下之結構反應相關知識仍十分缺乏,因此要預測互連結構之可靠度,已成為一大挑戰。為了節省研發所需的成本和時間,必須回到物理基本面找出一個可以解釋界面脫層的物理模型,以預測產品的可靠度。完整的界面脫層物理模型包含著界面破壞力學理論、界面脫層驅動力之分析與界面破壞韌性及疲勞脫層之實驗分析,藉此預測界面脫層之成長。本論文著重於界面破壞及疲勞實驗部分,內容包含界面疲勞脫層實驗之建立及得到此界面脫層之疲勞特性常數。
本研究改善及運用微拉伸試驗機台,以模式一形式之雙懸臂樑破壞實驗方式量測界面脫層之疲勞特性常數。分析的界面為電子構裝結構中常見之聚醯亞胺薄膜與氮化矽薄膜界面。本研究運用彈性基底之雙懸臂樑理論,藉此從實驗數據反推出試件的裂紋長度與實際觀測結果相近,並能得到每一疲勞週次的裂紋長度以及應變能釋放率的幅度(ΔG),找出聚醯亞胺與氮化矽界面的疲勞特性曲線常數。疲勞實驗結果發現聚醯亞胺與氮化矽的界面疲勞裂紋成長速率於10-7 到10-3 (m/cycle)間,其疲勞特性曲線具有一線性關係,實驗得到此界面疲勞特性常數(n)約在2.85與3.53之間。本論文實驗結果可進一步與實際電子構裝結構受應力作用下之界面破壞力學參數配合,模擬互連系統界面脫層之成長。
Advanced microelectronic components typically consist of heterogeneous, multilayered layered interconnect structures made of metal conductor and ceramic or polymer based dielectrics. Dominant failure mode of these components is interface delamination induced by thermal or mechanical stresses. Predicting the reliability of these interconnect structure is challenging due to that the materials and associated processes are new and the responses of materials interfaces to stressing and fatigue are unknown. Approach presently used in the semiconductor and microelectronics industries for characterizing interconnect reliability is through either component- or system-level accelerated tests. Issues associated with this approach are that the cost is very high and the time needed is too lengthy for required technology development cycle time. Consequently, a phenomenological model that could describe the ruptures of materials interfaces is desired for predicting reliability of interconnects. The desired modeling approach would include analysis of driving forces for interfacial delamination, characterization of fracture toughness and interfacial fatigue for the interface of interest and predicting the delamination growth. Focus of this study is on the characterization of interfacial fatigue crack propagation behavior.
In this research, a fracture mechanics-based technique was used for characterizing interfacial fatigue crack propagation. The experimental setup was based on the mode-I double cantilever beam (DCB) configutation. The test is conducted by using a custom-developed micro tester. Interface considered is the polyimide to silicon nitride thin film interface. This interface is one of the most common interfaces in state-of-the-art microelectronic packages. The loading versus crack opening results obtained from the DCB test were analyzed by using an analytical formula based on the beam on elastic foundation theory. From the analysis the relationship between crack growth rate and the range of the applied strain energy release rate was determined. For the polyimide-SiN interface, the cyclic fatigue delamination-growth rates were measured from ~10-7 to10-3 m/cycle and found to display a power-law dependence on the range of the applied strain energy release rate. Results of this study may be further combined with the fracture mechanics parameters determined for the interfaces in real electronic packages to predict the delamination growth in these structures.
參考文獻
[1] X. Wu, K. W. Paik and S. N. Bhandarkar, “To cut or not to cut: a thermomechanical stress analysis of polyimide thin-film on ceramic structures,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 18, pp. 150-153, 1995.
[2] J. L. Beuth and S. H. Narayan, “Residual stress-driven delamination in deposited multi-layers,” International Journal of Solids and Structures, Vol. 33, pp.65-78, 1996.
[3] X. Liu, V. K. Sooklal, M. A. Verges and M. C. Larson, “Experimental study and life prediction on high cycle vibration fatigue in BGA packages,” Microelectronics Reliability, Vol. 46, pp. 1128-1138, 2006.
[4] K. M. Chen, K. K. Ho and D. S. Jiang, “Impact of lead free solder materials on board level reliability for low-K WLCSP,” Proceedings of the International Microsystems, Packaging, Assembly and Circuits Technology Conference, IMPACT-2007 Hsinchu, Taiwan, pp. 243-245, 2007.
[5] M. W. Lane, R. H. Dauskardt, Q. Ma, H. Fujimoto and N. Krishna, ”Subcritical debonding of multilayer interconnect structures: Temperature and humidity effects,” Materials Research Society Symposium Proceedings, Vol. 563, pp. 251-256, 1999.
[6] S. Benayoun, L. Fouilland-Paille and J. J. Hantzpergue, “Microscratch test studies of thin silica films on stainless steel substrates,” Thin Solid Films, Vol. 352, pp. 156-166, 1999.
[7] J. Yang and P. Oliver, “Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes,” Sensors and Actuators, A: Physical, Vol. 97-98, pp. 520-526, 2002.
[8] Y. T. Yen and Y. C. Lin, “Study peeling strength of tape carrier packaging and chip scale packaging,” Sensors and Actuators, A: Physical, Vol. 139, pp.330-336, 2007.
[9] S. Roham, K. Hardikar and P. Woytowitz, “Crack penetration and deflection at a bimaterial interface in a four-point bend test,” Journal of Materials Research, Vol.19, pp. 3019-3027, 2004.
[10] J. Guzek, H. Azimi and S. Suresh, “Fatigue crack propagation Along Polymer-Metal Interface in Microelectronic Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 20, pp. 496-504, 1997.
[11] J. M. Snodgrass, A. Kirtikar and R. H. Dauskardt, “Adhesion and Reliability of Polymer/Inorganic Interfaces,” Transactions of the ASME-Journal of Electronic Packaging, Vol. 120, pp. 328-335, 1998.
[12] X. Dai, M. V. Brillhart and P. S. Ho, “Adhesion Measurement for Electronic Packaging Applications Using Double Cantilever Beam Method,” IEEE Transactions on Components and Packaging Technology, Vol. 23, pp.101-116, 2000.
[13] J. M. Snodgrass, D. Pantelidis, M. L. Jenkins, J. C. Bravman and R. H. Dauskardt, “Subcritical debonding of polymer/silica interfaces under monotonic and cyclic loading,” Acta Materialia, Vol. 50, pp. 2395-2411, 2000.
[14] A. Pirondi and G. Nicoletto, “Fatigue crack growth in bonded DCB specimens,” Engineering Fracture Mechanics, Vol. 71, pp. 859-871, 2004.
[15] B. M. Sharratt, L. C. Wang and R. H. Dauskardt, “Anomalous debonding behavior of a polymer/inorganic interface,” Acta Materialia, Vol. 55, pp. 3601-3609, 2007.
[16] T. Kusaka, M. Hojo, Y. W. Mai, T. Kurokawa, T. Nojima and S. Ochiaib , “Rate dependence of mode I fracture behaviour in carbon-fibre/epoxy composite laminates,” Composites Science and Technology, Vol. 58, pp. 591-602, 1997.
[17] G. Hug, P.Thevenet, J.Fitoussi and D.Baptiste, “Effect of the loading rate on mode I Interlaminar fracture toughness of laminated composites,” Engineering Fracture Mechanics, Vol. 73, pp. 2456-2462, 2006.
[18] J. R. Rice, Z. Suo and J. S. Wang., “Mechanics and thermodynamics of brittle interfacial failurein bimaterial system,” In: Ruhle M, Evans AG, Ashby MF, Hirth JP, editors.Metal-Ceramics Interfaces, New York: Pergamon, pp.269-294, 1990.
[19] J. Dundurs, “Edge bonded dissimilar orthogonal elastic wedges,” Journal of Applied Mechanics, Vol. 36, pp. 650-652, 1969.
[20] J. R. Rice, “Elastic fracture mechanics concepts for interfacial cracks,” Journal of Applied Mechanics, Transactions ASME, Vol. 55, pp. 98-103, 1988.
[21] J. W. Hutchinson and Z. Suo, “ Mixed mode cracking in layered materials,”. In: J. W. Hutchinson, W.Y. Theodore, editors. Advances in applied mechanics, New York: Academic Press, pp.63-191, 1992.
[22] K. S. Venkatesha, B. Dattaguru and T.S. Ramamurthy, “Finite element analysis of an interface crack with large crack-tip contact zones,” Engineering Fracture Mechanics, Vol. 54, pp. 847-860, 1996.
[23] A. A. Griffth, “The phenomena of rupture and flow in solids,” Philosophical Transaction, Series A, Vol. 221, pp. 163-198 , 1920.
[24] G. R. Irwin and J. A. Kies, J. Welding, Vol. 33, p. 193, 1954
[25] P. C. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, Transactions ASME , Vol. 85, pp. 528-534, 1963.
[26] J.K. Shang, “Interface fatigue crack growth in layered materials”, Proceedings of the Fatigue Conference, pp. 43-54, 1996.
[27] M. F. Kanninen, “An augmented double beam model for studying crack propagation and arrest,” International Journal of Fracture, Vol. 9, pp. 83-92, 1973.
[28] F. E. Penado, “A Closed Form solution for the energy release rate of the double cantilever beam specimen with an adhesive layer,” Journal of Composite Materials, Vol. 27, pp. 383-407, 1993.
[29] S. Erpolat, I. A. Ashcroft, A. D. Crocombe and M. A. Wahab, “On the analytical determination of strain energy release rate in bonded DCB joints,” Engineering Fracture Mechanics, Vol. 71, pp. 1393-1401, 2004
[30] A. H. Ghamdi, I. A. Ashcroft, A. D. Crocombe and M. M. Wahab, “Crack growth in adhesively bonded joints subjected to variable frequency fatigue loading,” The Journal of Adhesion, Vol. 79, pp. 1161–1182, 2003.
[31] J. M. Snodrass and R. H. Dauskardt, “The effect of fatigue on the adhesion and subcritical debonding of Benzocyclobutene/Silicon Dioxide interfaces,” Materials Research Society, Vol. 612, pp. D1.3.1-D1.3.6, 2000.
[32] M. M. Hamda, M. M. Megahed and M. M. I. Hammouda, “Fatigue crack growth in double cantilever beam specimen with an adhesive layer,” Engineering Fracture Mechanics, Vol. 60, pp. 605-614, 1998
[33] R. H. Dauskardta, M. Lanea, Q. Mab and N. Krishna, “Adhesion and debonding of multi-layer thin film structures,” Engineering Fracture Mechanics, Vol. 61, pp. 141-162, 1998.
[34] A. Sjogren and L. E. Asp, “Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading,” International Journal of Fatigue, Vol. 24, pp. 179-184, 2002.
[35] A. Arguelles, J. Vina, A. F. Canteli, M. A. Castrillo and J. Bonhomme, “Interlaminar crack initiation and growth rate in a carbon-fibre epoxy composite under mode-I fatigue loading,” Composites Science and Technology, Vol. 68, pp. 2325-2331, 2008.
[36] ASTM D5528-1, “Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites,” West Conshohocken, PA, 2007.
[37] ASTM D6115-97, “Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber Reinforced Polymer Matrix,” West Conshohocken, PA, 2004.
[38] ASTM D647-08, “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” West Conshohocken, PA, 2008.
[39] 惠汝生,LabVIEW 8.X圖控程式應用,全華科技圖書股份有限公司 印行,民國95年。
[40] 施政邦,矽晶及薄膜界面之破壞韌性量測,國立成功大學,碩士論文,2009。
[41] R. C. Hibbeler ,Mechanics of Materials, 6th Ed., Prentice Hall, Upper Saddle River, NJ, 2005.
[42] R. J. Sanford, Principles of Fracture Mechanics, Prentice Hall, Upper Saddle River, NJ, 2003.
[43] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3th Ed., McGraw Hill, New York, 1987.