簡易檢索 / 詳目顯示

研究生: 王正鈺
Wang, Cheng-Yu
論文名稱: 葉綠體第一型DnaJ同源蛋白質調控之種子健康
Seed fitness modulated by the type I chloroplast DnaJ homologues
指導教授: 邱啟洲
Chiu, Chi-Chou
共同指導教授: 蘇百祥
Su, Pai-Hsiang
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 66
中文關鍵詞: 阿拉伯芥葉綠體J蛋白伴護子種子充實
外文關鍵詞: Arabidopsis, chloroplast, J protein, molecular chaperone, seed fitness
相關次數: 點閱:91下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱休克蛋白是一群保守性的伴護蛋白,廣泛存在於原核和真核生物中,根據其分子量,可被細分為不同的家族。葉綠體擁有自己的熱休克蛋白Hsp70伴護子系統,其可能參與多個生物過程,並且透過指定含有J結構域的共同伴護子 (J蛋白),將之招募到特定過程。阿拉伯芥 (Arabidopsis thaliana) 中,存在19個葉綠體的J蛋白,其中有4個是屬於第一型的J蛋白,被命名為DJA4、DJA5、DJA6和DJA7,至今,關於它們的生物功能了解甚少。我們的初步研究,顯示葉綠體DJA蛋白對種子健康是重要的。我們觀察到dja四重突變株 (dja quadruple knockout, dja-qko) 所產生的種子,表現出不規則形狀的皺縮外觀。生化分析顯示,皺縮種子含有較低含量的儲存性脂肪酸 (三酸甘油酯)。生理特徵顯示,dja-qko突變株種子無法在無糖MS培養基上生長,這可能是由於在突變株種子中用於早期建立幼苗的儲存物儲備不足所致。此外,dja-qko突變株幼苗,在含高濃度糖的MS培養基上,也表現出敏感性外表型,表示葉綠體DJA蛋白可能參與糖代謝或訊息傳遞。總而言之,這些數據表示DJA蛋白是種子發育所必需的,並且對於早期萌芽階段之幼苗是十分重要的。

    Heat-shock proteins (Hsps) are conserved chaperone proteins that widely exist in the prokaryotic and eukaryotic organisms. According to their molecular weight, these proteins could be classified into different subfamilies. Chloroplast has its own Hsp70 chaperone system, which may be involved in multiple biological processes and is recruited to specific processes by designated J domain-containing co-chaperones (J proteins). In Arabidopsis, there are 19 chloroplast-targeted J proteins; of them 4 are belonged to type-I J proteins naming DJA4, DJA5, DJA6 and DJA7. To date, little is known about the biological function of DJAs. Our study showed that chloroplast DJA proteins are important for the seed fertility and fitness. Viable seeds produced by the dja quadruple knockout (dja-qko) mutant exhibited a wrinkled appearance with irregular shape. Biochemical analyses revealed that the wrinkled seeds contain a reducing level of storage fatty acid (triacylglycerol). Physiological characterization showed that the dja-qko seedlings could not grow up on sugar-free MS medium, which might due to an insufficient storage reserve in mutant seeds for early establishment of young seedlings. Furthermore, the dja-qko seedlings also exhibited a sensitive phenotype to a higher level of sugar in MS medium, implying that chloroplast DJA proteins may be involved in sugar metabolism or signaling. To sum up, our data suggested that chloroplast DJA proteins are required for seed development and important for seedling establishment at the early germinating stage.

    目錄 中文摘要......................................................................................................................i 英文延伸摘要...............................................................................................................ii 誌謝...........................................................................................................................xi 目錄...........................................................................................................................xii 表目錄.......................................................................................................................xv 圖目錄......................................................................................................................xvi 附圖目錄...................................................................................................................xvi 符號及縮寫索引表.....................................................................................................xviii 主文 壹、 背景介紹與前人結果..............................................................................................1 一、 葉綠體J蛋白的分類...............................................................................................1 二、 葉綠體J蛋白的生理功能.........................................................................................2 三、 阿拉伯芥葉綠體第一型J蛋白命名與dja突變株特性....................................................2 四、 種子發育過程........................................................................................................3 五、 種子儲存物與經濟意義...........................................................................................3 六、 種子充實與熱逆境.................................................................................................4 七、 基因調控種子儲油之例子.......................................................................................4 八、 高溫逆境影響種子充實之例子.................................................................................5 九、 葉綠體第一型J蛋白抵抗高溫逆境影響.....................................................................5 十、 實驗研究目標.......................................................................................................5 貳、 材料與方法...........................................................................................................6 一、 植物相關材料製備.................................................................................................6 1. 植物生長條件...........................................................................................................6 2. 阿拉伯芥突變株來源…..............................................................................................6 二、 含DJA基因片段之載體構築....................................................................................7 1. 本篇文章內所使用的 E. coli 勝任細胞品系與用途.........................................................7 2. 培養液成分...............................................................................................................7 3. 對應DJA之引子設計..................................................................................................7 4. 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) ...................................................9 5. 瓊脂膠體電泳 (Agrose gel electrophoresis) 和 DNA 純化 (DNA purification)....................9 6. 限制酶剪切和基因黏合與轉殖 (Restriction enzyme digestion, ligation and transformation) ..................................................................................................................................10 7. 菌落聚合酶連鎖反應檢測 (Colony PCR) 和質體抽取 (Plasmid mini-preparation) ............11 8. pCambia1390載體構築............................................................................................11 三、 DJA轉基因互補試驗 (Complementation test) .........................................................12 1. 本篇文章內所使用的農桿菌品系與轉殖 (transformation) .............................................12 2. 農桿菌 (Agrobacterium tumefaciens GV3101) 勝任細胞之製備 (化學法) ......................12 3. 花序浸漬法-阿拉伯芥轉殖 (Floral dip: Agrobacterium-mediated transformation of Arabidopsis thaliana) ..................................................................................................12 4. 篩選轉基因植株......................................................................................................13 5. 植物DNA萃取 (Genomic DNA extraction) .................................................................13 6. 基因分型 (genotyping) 檢驗......................................................................................13 四、 種子儲存物分析...................................................................................................14 1. 總蛋白質粗萃取與定量 (Total protein extraction and quantification) .............................14 2. SDS-PAGE............................................................................................................14 3. 脂質萃取 (Lipid extraction) 與薄層層析法 (TLC, Thin Layer Chromatography) ...............15 4. 脂肪酸組成 (Fatty acid composition) 與氣相層析質譜儀檢測 (GC-MS, Gas Chromatography-Mass spectrometry) ..........................................................................16 5. 碳水化合物分析 (Carbohydrate analysis) ..................................................................17 6. 澱粉定量 (Starch quantification) ..............................................................................17 五、 植物生理測試......................................................................................................18 1. 種子萌芽試驗與子葉變綠時間點觀察.........................................................................18 2. 葉綠素含量測定......................................................................................................19 3. 碳源控制條件下之生長觀察......................................................................................19 4. 種子直播土壤之生長觀察.........................................................................................20 參、 結果...................................................................................................................21 一、 dja-qko突變株之主要外表型..................................................................................21 二、 含DJA基因之pCambia1390質體構築.....................................................................21 1. 構築pCambia1390-DJA6gDNA質體...........................................................................22 2. 構築pCambia1390-DJA7gDNA質體...........................................................................22 3. 構築pCambia1390/35S-DJA5gDNA質體....................................................................22 4. 構築pCambia1390/35S-DJA4gDNA質體....................................................................23 5. 構築pCambia1390/DJA7pro-DJA5gDNA質體.............................................................23 三、 DJA轉基因互補測試 (Complementation test) ........................................................24 四、 種子儲存物分析...................................................................................................25 1. 總蛋白分析.............................................................................................................25 2. 脂質分析................................................................................................................26 3. 脂肪酸組成分析......................................................................................................26 4. 碳水化合物分析......................................................................................................27 五、 外源性碳源影響種子萌芽率與子葉變綠時間點........................................................27 六、 外源性碳源影響植株生長......................................................................................28 七、 dja-qko突變株種子播種於土壤之植株生長..............................................................29 八、 結論...................................................................................................................30 (一) DJA轉基因互補測試.............................................................................................30 (二) 種子儲存物分析...................................................................................................30 (三) 植物生理分析.......................................................................................................30 肆. 討論 ....................................................................................................................31 一、 探討葉綠體第一型J蛋白對植物生理之影響.............................................................31 二、 葉綠體DJA蛋白參與種子發育與充實.....................................................................32 三、 葉綠體DJA蛋白可能影響脂質生合成途徑..............................................................32 四、 葉綠體DJA蛋白可能參與糖代謝或訊息傳遞...........................................................34 五、 葉綠體DJA蛋白可能參與光合作用........................................................................34 伍. 參考文獻...............................................................................................................36 陸. 表圖.....................................................................................................................40 表.............................................................................................................................40 圖.............................................................................................................................42 附圖.............................................................................................................................57 表目錄 表 1、 本研究使用之專一性引子列表............................................................................40 圖目錄 圖 1、 野生株與dja-qko突變株成熟果莢裡的種子形態分析..............................................42 圖 2、 以專一性引子克隆DJA4、DJA5、DJA6、DJA7基因............................................43 圖 3、 pCambia1390-DJA6gDNA之質體構築.................................................................44 圖 4、 pCambia1390-DJA7gDNA之質體構築.................................................................45 圖 5、 pCambia1390/35S-DJA5gDNA之質體構築..........................................................46 圖 6、 pCambia1390/35S-DJA4gDNA之質體構築...........................................................47 圖 7、 pCambia1390/DJA7pro-DJA5gDNA之質體構築....................................................48 圖 8、 DJA互補系種子之外表型...................................................................................49 圖 9、 成熟種子之儲存性蛋白質含量分析......................................................................50 圖 10、 成熟種子之TAG含量分析.................................................................................51 圖 11、 TAG之FA組成分析..........................................................................................52 圖 12、 培養基含糖有無對種子萌芽之影響....................................................................53 圖 13、 培養基含糖有無對子葉變綠時間點之影響..........................................................54 圖 14、 培養基含糖有無對幼苗生長之影響....................................................................55 圖 15、 播種於土壤之幼苗生長觀察..............................................................................56 附圖目錄 附圖 1、野生株與dja-qko突變株種子之綜合比較............................................................57 附圖 2、阿拉伯芥種子發育過程之葉綠體第一型DJA基因表現量.......................................58 附圖 3、 T1子代 pCambia1390-DJA6gDNA轉殖株之基因分型檢驗..................................59 附圖 4、 T1子代 pCambia1390-DJA7gDNA轉殖株之基因分型檢驗..................................60 附圖 5、 T1子代 pCambia1390/35S-DJA5gDNA轉殖株之基因分型檢驗............................61 附圖 6、 T1子代 pCambia1390/35S-DJA4gDNA轉殖株之基因分型檢驗............................62 附圖 7、 T1子代 pCambia1390/DJA7pro-DJA5gDNA轉殖株之基因分型檢驗.....................63 附圖 8、 T1子代 pCambia1390/35S-DJA5gDNA轉殖株之白化致死外表型 (Albino lethal phenotype) ................................................................................................................64 附圖 9、 植株葉綠素含量測定......................................................................................65 附圖 10、 黑暗條件下培養基含糖有無對幼苗生長之影響….............................................66  

    參考文獻

    1. Allorent, G., Osorio, S., Vu, J.L., Falconet, D., Jouhet, J., Kuntz, M., Fernie, A.R., Lerbs-Mache, S., Macherel, D., Courtois, F., and Finazzi, G. (2015). Adjustments of embryonic photosynthetic activity modulate seed fitness in Arabidopsis thaliana. New Phytol 205, 707-719.

    2. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science (New York, N.Y.) 301, 653-657.

    3. Andre, C., Froehlich, J.E., Moll, M.R., and Benning, C. (2007). A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19, 2006-2022.

    4. Apuya, N.R., Yadegari, R., Fischer, R.L., Harada, J.J., Zimmerman, J.L., and Goldberg, R.B. (2001). The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60α gene. Plant physiology 126, 717-730.

    5. Bäumlein, H., Miséra, S., Luerßen, H., Kölle, K., Horstmann, C., Wobus, U., and Müller, A.J. (1994). The FUS3 gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis. The Plant Journal 6, 379-387.

    6. Bates, P.D., Durrett, T.P., Ohlrogge, J.B., and Pollard, M. (2009). Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant physiology 150, 55-72.

    7. Baud, S., Dubreucq, B., Miquel, M., Rochat, C., and Lepiniec, L. (2008). Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6, e0113.

    8. Baud, S., Mendoza, M.S., To, A., Harscoet, E., Lepiniec, L., and Dubreucq, B. (2007a). WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50, 825-838.

    9. Baud, S., Wuilleme, S., Dubreucq, B., de Almeida, A., Vuagnat, C., Lepiniec, L., Miquel, M., and Rochat, C. (2007b). Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J 52, 405-419.

    10. Becker, M.G., Hsu, S.-W., Harada, J.J., and Belmonte, M.F. (2015). Genomic dissection of the seed. Advances in Seed Biology, 62.

    11. Cernac, A., and Benning, C. (2004). WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40, 575-585.

    12. Chen, K.-M., Holmström, M., Raksajit, W., Suorsa, M., Piippo, M., and Aro, E.-M. (2010a). Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC plant biology 10, 43.

    13. Chen, K.M., Holmstrom, M., Raksajit, W., Suorsa, M., Piippo, M., and Aro, E.M. (2010b). Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biol 10, 43.

    14. Chiu, C.C., Chen, L.J., Su, P.H., and Li, H.M. (2013). Evolution of chloroplast J proteins. PloS one 8, e70384.

    15. Dekkers, B.J., Schuurmans, J.A., and Smeekens, S.C. (2004). Glucose delays seed germination in Arabidopsis thaliana. Planta 218, 579-588.

    16. Fait, A., Angelovici, R., Less, H., Ohad, I., Urbanczyk-Wochniak, E., Fernie, A.R., and Galili, G. (2006). Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant physiology 142, 839-854.

    17. Finka, A., Mattoo, R.U., and Goloubinoff, P. (2011). Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell stress & chaperones 16, 15-31.

    18. Finkelstein, R.R., and Somerville, C.R. (1990). Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant physiology 94, 1172-1179.

    19. Focks, N., and Benning, C. (1998). wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant physiology 118, 91-101.

    20. Goldberg, R.B., de Paiva, G., and Yadegari, R. (1994). Plant embryogenesis: zygote to seed. Science (New York, N.Y.) 266, 605-614.

    21. Keith, K., Kraml, M., Dengler, N.G., and McCourt, P. (1994). fusca3: a heterochronic mutation affecting late embryo development in Arabidopsis. The Plant Cell 6, 589-600.

    22. King, S.P., Lunn, J.E., and Furbank, R.T. (1997). Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques. Plant physiology 114, 153-160.

    23. Kong, F., Deng, Y., Zhou, B., Wang, G., Wang, Y., and Meng, Q. (2014). A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress. J Exp Bot 65, 143-158.

    24. Latijnhouwers, M., Xu, X.M., and Moller, S.G. (2010). Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta 232, 567-578.

    25. Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M.X., Arondel, V., Bates, P.D., Baud, S., Bird, D., Debono, A., Durrett, T.P., Franke, R.B., Graham, I.A., Katayama, K., Kelly, A.A., Larson, T., Markham, J.E., Miquel, M., Molina, I., Nishida, I., Rowland, O., Samuels, L., Schmid, K.M., Wada, H., Welti, R., Xu, C., Zallot, R., and Ohlrogge, J. (2010). Acyl-lipid metabolism. Arabidopsis Book 8, e0133.

    26. Li, Y., Beisson, F., Pollard, M., and Ohlrogge, J. (2006). Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67, 904-915.

    27. Lu, D., Shen, X., Cai, X., Yan, F., Lu, W., and Shi, Y.C. (2014). Effects of heat stress during grain filling on the structure and thermal properties of waxy maize starch. Food Chem 143, 313-318.

    28. Meinke, D.W. (1992). A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science (New York, N.Y.) 258, 1647-1650.

    29. Millar, A.A., and Kunst, L. (1997). Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12, 121-131.

    30. Nambara, E., Naito, S., and McCourt, P. (1992). A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. The Plant Journal 2, 435-441.

    31. Ohlrogge, J.B. (1994). Design of new plant products: engineering of fatty acid metabolism. Plant physiology 104, 821.

    32. Price, J., Li, T.C., Kang, S.G., Na, J.K., and Jang, J.C. (2003). Mechanisms of glucose signaling during germination of Arabidopsis. Plant physiology 132, 1424-1438.

    33. Roldan, M., Gomez-Mena, C., Ruiz-Garcia, L., Salinas, J., and Martinez-Zapater, J.M. (1999). Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20, 581-590.

    34. Sarkar, N.K., Thapar, U., Kundnani, P., Panwar, P., and Grover, A. (2013). Functional relevance of J-protein family of rice (Oryza sativa). Cell stress & chaperones 18, 321-331.

    35. Sedaghatmehr, M., Mueller-Roeber, B., and Balazadeh, S. (2016). The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nature communications 7, 12439.

    36. Sessions, A. (2002). A high-throughput Arabidopsis reverse genetics system. The Plant Cell Online 14, 2985-2994.

    37. Shi, L.X., and Theg, S.M. (2010). A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. Plant Cell 22, 205-220.

    38. Silver, P.A., and Way, J.C. (1993). Eukaryotic DnaJ homologs and the specificity of Hsp70 activity. Cell 74, 5-6.

    39. Streb, S., and Zeeman, S.C. (2012). Starch Metabolism in Arabidopsis. The Arabidopsis Book / American Society of Plant Biologists 10, e0160.

    40. Su, P.H., and Li, H.M. (2008). Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant physiology 146, 1231-1241.

    41. Su, P.H., and Li, H.M. (2010). Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell 22, 1516-1531.

    42. Suetsugu, N., Kagawa, T., and Wada, M. (2005). An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. Plant physiology 139, 151-162.

    43. Sussman, M.R., Amasino, R.M., Young, J.C., Krysan, P.J., and Austin-Phillips, S. (2000). The Arabidopsis knockout facility at the University of Wisconsin-Madison. Plant physiology 124, 1465-1467.

    44. Vitha, S. (2003). ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. The Plant Cell Online 15, 1918-1933.

    45. Willmund, F., Dorn, K.V., Schulz-Raffelt, M., and Schroda, M. (2008). The chloroplast DnaJ homolog CDJ1 of Chlamydomonas reinhardtii is part of a multichaperone complex containing HSP70B, CGE1, and HSP90C. Plant physiology 148, 2070-2082.

    46. Xu, F., Tan, X., and Wang, Z. (2010). Effects of sucrose on germination and seedling development of Brassica napus. International Journal of Biology 2, 150.

    47. Yu, E., Fan, C., Yang, Q., Li, X., Wan, B., Dong, Y., Wang, X., and Zhou, Y. (2014). Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling. PloS one 9, e101914.

    48. Zhu, X., Liang, S., Yin, J., Yuan, C., Wang, J., Li, W., He, M., Wang, J., Chen, W., Ma, B., Wang, Y., Qin, P., Li, S., and Chen, X. (2015). The DnaJ OsDjA7/8 is essential for chloroplast development in rice (Oryza sativa). Gene 574, 11-19.

    下載圖示 校內:2022-01-18公開
    校外:2022-01-18公開
    QR CODE