| 研究生: |
陳力豪 Chen, Li-Hao |
|---|---|
| 論文名稱: |
風力發電場規劃與發電機葉片設計在地理限制下之整合研究 Wind Farm Optimization with Turbine Blade Design Considering Geographical Constraints |
| 指導教授: |
詹魁元
Chan, Kuei-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 風力發電 、風力發電場規劃 、風力發電機葉片設計 、風力葉片空氣動力學 、最佳化設計 |
| 外文關鍵詞: | Wind energy, Wind farm, Wind turbine blade design, Aerodynamics, Optimization design |
| 相關次數: | 點閱:138 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在科技不斷進步以及能源消耗量持續提升的今日,利用更永續的方式來產生電力已成為一大趨勢,其中風力發電為最具潛力的方法之一。良好的風力發電轉換效率必須搭配完善的風力發電場規劃,其中包含配電控制系統整合、風場規劃、塔架設計、風力葉片結構設計、及空氣動力性能評估等。在以往文獻中,我們發現大部分學者只針對個別領域進行研究,鮮少有整合不同領域進行風場設計並探討各領域間相互之影響。本研究欲提出一套整合型風力發電場規劃與發電機葉片設計,並與現行台灣實際風力發電場案例作比較,探討在各式風力發電機選擇下對於整體風場之影響,其中葉片設計需在結構不發生破壞下有良好的空氣動力性能,以提升發電效率。
考量風力發電場規劃與風力葉片設計的問題為一整合型的問題,此類型的問題為存在大量變數、大量的拘束條件、複雜的數學運算、及使用工程分析軟體的複雜系統設計問題。針對複雜系統之設計方法我們採用解析目標傳遞法(Analytical Target Cascading, ATC),此方法是利用系統化的拆解方式,將複雜系統拆解成較小的子系統,降低了求解上的困難度,在求解的過程中透過子系統間的溝通協調,使整體系統可以達到與未拆解前系統相同的最佳值。倘若拆解後的子系統因設計空間太過複雜,使演算法無法收斂,此時子系統的設計點可能落在可行解或非可行解空間之不恰當區域,導致最終結果不理想,為降低未收斂子系統對整體結果的影響,本研究利用子系統現有設計點,依梯度方向搜尋較佳的設計點,並觀察修正後整體系統之收斂情形。
本論文最後展示風力發電場規劃與葉片設計之整合型範例,並以此範例探討改良後之解析目標傳遞法收斂情形,同時本研究亦考量風場地理位置上的限制,針對地形限制及風速/風向之地理特性進行更完善的規劃。
關鍵字:風力發電,風力發電場規劃,風力發電機葉片設計,風力葉片空氣動力學,最佳化設計
The increase of energy consumption in all sectors calls for more sustainable sources of energy. In the pursue of green energy, wind turbines have the highest potential and are also the most implemented worldwid. Design and planning of wind energy require the integration of wind farm location and layout, wind turbine frame design, the aerodynamics of wind turbine blades, among many other cost and engineering considerations. In the literature, most researchers consider only one aspect of the wind farm design while ignoring the rest. Since these disciplines are deeply coupled in nature, in this research we propose an integrated framework of both wind farm layout optimization and turbine blade design to improve the overall energy transformation efficiency while considering the aerodynamics of turbine blades and the wake effects of wind turbine placement.
The integrated wind farm and turbine blade design has a large number of variables, numerous constrains, and time-consuming engineering computer simulations. In this thesis, this complex problem is decomposed as a multi-level system and then solved using Analytical target cascading (ATC). By systematic coordination, ATC should provide comparable results as the all-in-one problem. However, the optimization processes of subproblems in ATC might not always converge to the global optimum in practice. These unconverged subsystems will provide inappropriate responses in ATC that might lead to longer simulation time or even erroneous outcomes. To alleviate the impacts of unconverged subsystems, we proposed a modification to ATC such that the entire ATC solution will not be baffled by inappropriate responses. The proposed ATC modification is tested in a mathematical example and also implemented in the wind farm optimization problem. Site-specific geographical constraints and the local wind characteristics are both considered in the wind farm planning. The result is a more rigorous all-around wind energy solution that fits local geographical characteristics.
Keywords:Wind energy;Wind farm;Wind turbine blade design;Aerodynamics;Optimization design
[1] 台灣颱風資訊中心,"Taiwan typhoon information center," http://typhoon.ws/, 2004.
[2] 行政院國科會, "ienergy節能減碳教育網," http://phsu.ie.ntnu.edu.tw/ienergy/e3,2012.
[3]林均諭,「整合風力發電機與齒輪箱之構型設計」,成功大學機械工程學系,碩士論文,2008.
[4]蔡勝任,「考慮不確定因素的風力能發電之多目標最佳電力潮流」,雲林科技大學電機工程系,碩士論文, 2009.
[5]吳文翔,「複材風力發電葉片設計與分析」,成功大學航空太空工程學系,碩士論文, 2010.
[6]王泰元,「利用grasp解決風力發電場最佳風機配置問題」,暨南國際大學資訊管理學系,碩士論文,2011.
[7] J. Allison, M. Kokkolaras, and P. Papalambros, "On the impact of coupling strength on complex system optimization for single-level formulations," in Proceedings of the 2005
ASME International Design Engineering Technical Conferences, 2(6),265-275, 2005.
[8] S. Alyaqout, P. Papalambros, and A. Ulsoy, "Quanti cation and use of system coupling in decomposed design optimization problems," in Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition, November 5-11, 2005.
[9] Ernesto Benini and Andrea To olo, "Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation," Journal of Solar Energy Engineer-
ing, 124,357-363, 2002.
[10] Martin Bilbao and Enrique Alba, "Simulated annealing for optimization of wind farm annual pro t," Logistics and Industrial Informatics, 1-5, 2009.
[11] R. Braun., "Collaborative optimization: Am architecture for large-scale distributed design," PhD thesis, Stanford University, 1996.
[12] Edgardo D. Castronuovo and J. A. Peas Lopes, "On the optimization of the daily operation of a wind-hydro power plant," IEEE Transactions on Power Systems, 19,1599-1606, Aug,2004.
[13] K. Y. Chan, "Sequential linearization in analytical target cascading for optimization of complex multilevel systems," Proceedings of the Institution of Mechanical Engineers, PartC: Journal of Mechanical Engineering Science, 225(2),451-462, 2011.
[14] S. C. Chang and K. Y. Chan, "Iterative suspension and solution strategy for complex engineering problems," Proceedings of the 9th World Congress on Structural and Multidisciplinary Optimization, Shizuoka, Japan, June 13-17, 2011.
[15] G. Contaxis and A.Vlachos, "Optimal power
ow considering operation of wind parks and pump storage hydro units under large scale integration of renewable energy sources," IEEE Power Engineering Society Winter Meeting, 3,1745-1750, Jan, 2000.
[16] InfraVest GmbH, "歡迎來到英華威," http://www.infravest.com/TC/index.html,
2012.
[17] S. A. Grady, M. Y. Hussainia, and M. M. Abdullah, "Placement of wind turbines using
genetic algorithms," Renewable Energy, 30,259-270, Feb, 2005.
[18] J. Han and P. Papalambros, "A sequential linear programming coordination algorithm for analytical target cascading," Journal of Mechanical Design, 132(2),0210031{0210038,2010.
[19] J. Han and P. Papalambros, "An SLP lter algorithm for probabilistic analytical target cascading," Structural and Multididisciplinary Optimization, 41(6),935-945, 2010.
[20] T. C. Hung and K. Y. Chan, "Multi-objective design and tolerance allocation for single and multi-level systems," Journal of Intelligent Manufacturing (Online), DOI: 10.1007/s10845- 011-0608-3, 2012.
[21] J. F. Manwell, J. G. Mcgowan, and A. L. Rogers, Wind Energy Explained Theory, Design and Application. New York: John Wiley and Sons Ltd, 2nd edition, 2002.
[22] NO. Jensen, "A note of wind generator interaction," Roskilde, Denmark, Riso National Laboratory, 1983.
[23] M. Jureczko, M. Pawlak, and A. Mezyk, "Optimisation of wind turbine blades," Journal of Materials Processing Technology, 167,463-471, 2005.
[24] H. Kim, N. Michelena, P. Papalambros, and T. Jiang, "Target cascading in optimal system design," Journal of Mechanical Design, 125(3),474-480, 2003.
[25] J. Lassiter, M. Wiecek, and K. Andrighetti, "Lagrangian coordination and analytical target cascading: Solving atc-decomposed problems with lagrangian duality," Optimization and Engineering, 6(3),361-381, 2005.
[26] Y. Li, Z. Lu, and J. Michalek, "Diagonal quadratic approximation for parallelization of analytical target cascading," Journal of Mechanical Design, 130(5),0514021-05140211,2003.
[27] S. Marglin, "Public investment criteria," MIT Press, 1967.
[28] J. Michalek and P. Papalambros, "An e cient weighting update method to achieve acceptable consistency deviation in analytical target cascading," Journal of Mechanical Design,
127(2),206{214, 2005.
[29] N. Michelena, H. Kim, and P. Papalambros, "A system partitioning and optimization approach to target cascading," in Preceedings of the 12th International Conference on Engineering Design, August 24-26, 1999.
[30] N. Michelena, H. Park, and P. Papalambros, "Convergence properties of analytical target cascading," AIAA Journal, 41(5),897-905, 2003.
[31] G. Mosetti, C. Poloni, and B. Diviacco, "Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm," Journal of Wind Engineering and Industrial Aerodynamics, 16,105-116, Jan, 1994.
[32] K. Pandiaraj, P. Taylor, N. Jenkins, and C. Robb, "Distributed load control of autonomous renewable energy systems," IEEE Transactions on Energy Conversion, 16,14{19, March, 2001.
[33] Lennart Soder, "Reserve margin planning in a wind-hydro-thermal power system," IEEE Transactions on Power Systems, 8,564-571, May, 1993.
[34] S. Tosserams, L. Etman, P. Papalambros, and J. Rooda, "An augmented lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers,"Structural and Multidisciplinary Optimization, 31(3),176-189, 2006.
[35] A. J. Vitale and A. P. Rossi, "Computational method for the design of wind turbine blades," Journal of Hydrogen Energy, 33,3466-3470, 2008.