| 研究生: |
劉維儒 Liu, Wei-Ju |
|---|---|
| 論文名稱: |
壓電材料有限楔形結構之面外機電場解 Antiplane solutions of electro-mechanical field for a piezoelectric finite wedge |
| 指導教授: |
褚晴暉
Chue, Ching-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 367 |
| 中文關鍵詞: | 楔形結構 、壓電材料 、有限梅林轉換 、廣義強度因子 |
| 外文關鍵詞: | piezoelectric, generalized intensity factor, wedge, finite Mellin transforms |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文包含二部分,第一部份為求解單一壓電材料有限楔形結構在面外負載下之機電場;第二部份為求解雙等楔形角壓電材料結合之有限楔形結構在面外負載下之機電場。利用有限梅林轉換積分轉換法,可解析壓電楔形體內部之機電場,如位移場、電位場、應力場以及電位移場。並由所得之機電場進一步探討各種廣義強度因子以及奇異性階數。
結果顯示,在此面外問題中,奇異性階數只與楔形角度有關,並且在不同的圓週邊界條件下均會有相同的奇異性階數以及角函數。除此之外,受到圓週邊界條件的影響,外加機械負載以及電負載的強弱將使強度因子對楔形長度的變化而有不同的趨勢影響。
為瞭解裂紋的破壞行為,本研究亦利用能量密度因子探討楔形圓週的邊界效應以及楔形長度對於含裂縫壓電體的破壞行為。在結果中發現,當只有機械負載時,能量密度因子對楔形長度的趨勢將根據圓週的彈性場邊界條件做變化。反之,隨著電負載的增加,能量密度因子將根據圓週電場的邊界條件做變化。除此之外,能量密度因子與裂縫尖端的局部圓柱座標無關。因此裂紋將根據尖端附近之破壞韌性的強弱而可能沿著任意角度成長。
本研究可假設雙壓電材料之材料性質相同或是假設楔形長度為無窮大,結果可以退化為單一壓電材料或是無限域壓電楔形結構之機電場。此外,若忽略壓電效應,結果可以退化為彈性體楔形結構問題以驗證本研究的正確性。
This paper presents the general solutions of antiplane electro-mechanical field for two piezoelectric finite wedge problems: (1) a piezoelectric finite wedge subjected to a pair of concentrate forces and free charges; (2) a finite wedge of equal wedge angles bonded by two dissimilar piezoelectric materials. Employing the finite Mellin transforms method, the displacement, electrical potential, stress and electrical displacement fields are derived analytically. In addition, the singularity orders and all generalized intensity factors can also be obtained.
The results show that the singularity orders and angular functions depend on wedge angle under antiplane problem. These quantities are identical for different circular boundary conditions. Besides, the strength of applied force or free charge plays important role on the fracture behavior according to the circular boundary conditions.
After being reduced to the crack problem, the energy density theory is applied to study the effects of the boundary conditions on the circular edge and wedge radius on the fracture behaviors of the cracked piezoelectric medium. The results show that the elastic field condition on circular edge will effect the variations of energy density factor with wedge radius when the antiplane loading is subjected to mechanical loading only. The tendency may be reversed if the applied surface charge increases according to the electric field condition on circular edge. The results also show that the energy density factors are independent of the local coordinate defined at the crack tip. It means that the crack may extend along any direction depending on the fracture toughness of the materials near the crack tip.
The accuracy of these solutions has been validated when they are compared to those of some other degenerated problems (e.g. piezoelectric infinite wedge or elastic wedge problem).
[1] Ikeda, T., 1990. Fundamentals of Piezoelectricity. Oxford University Press, Oxford.
[2] 周卓明, 2003. 壓電力學. 全華, 台北.
[3] Uchino, K., 1997. Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic Publishers, Boston.
[4] Xu,X.L., Rajapakse, R.K.N.D., 2000. On singularities in composite piezoelectric wedges and junctions. International Journal of Solids and Structures, 37, 3253-3275.
[5] Kraus, J.D., Fleisch, D.A., 1999. Electromagnetics with Applications. Fifth edition, McGraw-Hill, New York.
[6] Cheng, D.K., 1983. Field and Wave Electromagnetics. Addison-Wesley, MA.
[7] Zhang, T.Y., Gao, C.F., 2004. Fracture behaviors of piezoelectric materials. Theoretical and Applied Fracture Mechanics, 41, 339-379.
[8] Gao, C.F., Noda, N., Zhang, T.Y., 2006. Dielectric breakdown model for a conductive crack and electrode in piezoelectric materials. International Journal of Engineering Science, 44, 256-272.
[9] Tranter, C.J., 1948. The use of the Mellin transform in finding the stress distribution in an infinite wedge. Quarterly Journal of Mechanics and Applied Mathematics, 1, 125-130.
[10] Williams, M.L., 1952. Stress singularities resulting from various boundary conditions in angular corners of plates in tension. Journal of Applied Mechanics, 19, 526-528.
[11] Chue, C.H., Liu, C.I., 2001. A general solution on stress singularities in anisotropic wedge. International Journal of Solids and Structures, 38, 6889-6906.
[12] Chue, C.H., Tseng, C.H., Liu, C.I., 2001.On stress singularities in an anisotropic wedge for various boundary conditions. Composite Structures, 54, 87-102.
[13] Ting, T.C.T., 1985. Elastic wedge subjected to antiplane shear tractions – a paradox explained. Quarterly Journal of Mechanics and Applied Mathematics, 38, 245-255.
[14] Lucas, R.A., Erdogan, F., 1966. Quasi-static transient thermal stresses in an infinite wedge. International Journal of Solids and Structures, 2, 205-222.
[15] Bogy, D.B., 1968. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. ASME Journal of Applied Mechanics, 35, 460-466.
[16] Hein, V.L., Erdogan, F., 1971. Stress singularities in a two-material wedge. International Journal of Fracture Mechanics, 7, 317-330.
[17] Bogy, D.B., 1970.On the problem of edge-bonded elastic quator-planes loaded at the boundary. International Journal of Solids and Structures, 6, 1287-1313.
[18] Bogy, D.B., 1971. Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. ASME Journal of Applied Mechanics, 38, 377-386.
[19] Bogy, D.B., Wang, K.C., 1971. Stress singularities at interface corners in bonded dissimilar isotropic elastic materials. International Journal of Solids and Structures, 7, 993-1005.
[20] Dempsey, J.P., Sinclair, G.B., 1979. On the stress singularities in the plane elasticity of the composite wedge. Journal of Elasticity, 9, 373-391.
[21] Dempsey, J.P., Sinclair, G.B., 1981. On the singular behavior at the vertex of a bi-material wedge. Journal of Elasticity, 11, 317-327.
[22] Muskhelishvili, N.I., 1953. Some Basic Problems of the Mathematical theory of Elasticity. Noordhoff, Groningen Holland.
[23] Theocaris, P.S., 1974. The order of singularity at a multi-wedge corner of a composite plate. International Journal of Engineering Science, 12, 107-120.
[24] Chen, D.H., Nisitani, H., 1992. Singular stress field in two bonded wedges. Transactions of Japan Society of Mechanical Engineers Series A, 58, 457-464.
[25] Munz, D., Fett, T., Yang, Y.Y., 1993. The regular stress term in bonded dissimilar materials after a change in temperature. Engineering Fracture Mechanics, 44, 185-194.
[26] Munz, D., Yang, Y.Y., 1993. Stresses near the edge of bonded dissimilar materials described by two stress intensity factors. International Journal of Fracture, 60, 169-177.
[27] Yang, Y.Y., Munz, D., 1994. Determination of the regular stress term in a dissimilar materials joint under thermal loading by the Mellin transform. Journal of Thermal Stresses, 17, 321-336.
[28] Bogy, D.B., 1972. Plane solution for anisotropic elastic wedge under normal and shear loading. ASME Journal of Applied Mechanics, 39, 1103-1109.
[29] Kuo, M.C., Bogy, D.B., 1974. Plane solutions for the displacement and traction-displacement problems for anisotropic elastic wedges. ASME Journal of Applied Mechanics, 41, 197-202.
[30] Kuo, M.C., Bogy, D.B., 1974. Plane solutions for traction problem on orthotropic unsymmetrical wedges and symmetrically twinned wedges. ASME Journal of Applied Mechanics, 41, 203-208.
[31] Dlale, F., 1984. Stress singularities in bonded anisotropic materials. International Journal of Solids and Structures, 20, 31-40.
[32] Ting, T.C.T., 1986. Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. International Journal of Solids and Structures, 22, 965-983.
[33] Ma, C.C., Hour, B..L., 1989. Analysis of dissimilar anisotropic wedge subjected to antiplane shear deformation. International Journal of Solids and Structures, 25, 1295-1309.
[34] Ma, C.C., 1995. Plane solution of thermal stresses for anisotropic bimaterial elastic wedges. Journal of Thermal Stresses, 18, 219-245.
[35] Shin, K.C., Kim, W.S., Lee, J.J., 2007. Application of stress intensity to design of anisotropic/isotropic bi-materials with a wedge. International Journal of Solids and Structures, 44, 7748-7766.
[36] Chue, C.H., Liu, C.I., 2002. Disappearance of free-edge stress singularity in composite laminates. Composite Structures, 56, 111-129.
[37] Chue, C.H., Liu, C.I., 2002. Stress singularities in a bimaterial anisotropic wedge with arbitrary fiber orientation. Composite Structures, 58, 49-56.
[38] Liu, C.I., Chue, C.H., 2006. On the stress singularity of dissimilar anisotropic wedges and junctions in antiplane shear. Composite Structures, 73, 432-442.
[39] Liu, C.I., Chue, C.H., 2007. Disappearance conditions of stress singularities for anisotropic bimaterial half-plane wedges under antiplane shear. Composite Structures, 74, 1-7.
[40] Barnett, D.M., Lothe, J., 1975. Dislocations and line charges in anisotropic piezoelectric insulators. Physica Status Solidi (B), 67, 105-111.
[41] Parton, V.Z., 1976. Fracture mechanics of piezoelectric material. Acta Astronautica, 3, 671-683.
[42] Chung, M.Y., Ting, T.C.T., 1995. Line force, charge and dislocation in angularly inhomogeneous anisotropic piezoelectric wedges and spaces. Philosophical Magazine, 71, 1335-1343.
[43] Chung, M.Y., Ting, T.C.T., 1995. Line force, charge and dislocation in anisotropic piezoelectric composite wedges and spaces. ASME Journal of Applied Mechanics, 62, 423-428.
[44] Chue, C.H., Chen, C.D., 2002. Decoupled formulation of piezoelectric elasticity under generalized plane deformation and its application to wedge problems. International Journal of Solids and Structures, 39, 3131-3158.
[45] Chue, C.H., Chen, C.D., 2003. Antiplane stress singularities in a bonded bimaterial piezoelectric wedge. Archive of Applied Mechanics, 72, 673-685.
[46] Chen, B.J., Xiao, Z.M., Liew, K.M., 2002. Electro-elastic stress analysis for a wedge-shaped crack interacting with a screw dislocation in piezoelectric solid. International Journal of Engineering Science, 40, 621-635.
[47] Chen, B.J., Xiao, Z.M., Liew, K.M., 2002. A screw dislocation in a piezoelectric bi-material wedge. International Journal of Engineering Science, 40, 1665-1685.
[48] Chue, C.H., Wei, W.B., Liu, T.J.C., 2003. The antiplane electro-mechanical field of a piezoelectric wedge under a pair of concentrated forces and free charges. Journal of the Chinese Institute of Engineers, 26, 575-583.
[49] Chue, C.H., Wei, W.B., Liu, J.C., 2006. Antiplane electro-mechanical field of a bimaterial piezoelectric wedge under a pair of concentrated forces and surface charges. Journal of the Chinese Institute of Engineers, 29, 467-480.
[50] Chen, C.D., 2006. On the singularities of the thermo-electro-elastic fields near the apex of a piezoelectric bounded wedge. International Journal of Solids and Structures, 42, 957-981.
[51] Zhang , T.Y., Hack, J.E., 1992. Mode-III cracks in piezoelectric materials. Journal of Applied Physics, 71, 5865-5870.
[52] Zhang, T.Y., Zhao, M., Tong, P., 2002. Fracture of piezoelectric ceramics. Advances in Applied Mechanics, 38, 148-289.
[53] Shindo, Y., Murakami, H., Hiriguchi, K., Narita, F., 2002. Evaluation of electric fracture properties of piezoelectric ceramics using the finite element and single-edge precracked–beam methods. Journal of the American Ceramic Society, 85, 1243-1248.
[54] Zhang, T.Y., Gao, C.F., 2004. Fracture behavior of piezoelectric materials. Theoretical and Applied Fracture mechanics, 41, 339-379.
[55] Li, Q., Chen, Y.H., 2007. Analysis of a permeable interface crack in elastic dielectric/piezoelectric bimaterials. Acta Mechanica Sinica/Lixue Xuebao, 23, 681-687.
[56] Li, Q., Chen, Y. H., 2007. Solution for a semi-permeable interface crack between two dissimilar piezoelectric materila. ASME Journal of Applied Mechanics, 74, 833-844.
[57] Deeg, W.F., 1980. The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids. Ph.D. Dissertation, Stanford University, CA.
[58] Pak, Y.E., 1990. Crack extension force in a piezoelectric material. ASME Journal of Applied Mechanics, 57, 647-653.
[59] Sosa, H., 1992. On the fracture mechanics of piezoelectric solids. International Journal of Solids and Structures, 29, 2613-2622.
[60] Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R., 1992. Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and Physics of Solids, 40, 739-765.
[61] Zuo, J.Z., Sih, G.C., 2000. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theoretical and Applied Fracture mechanics, 34, 17-33.
[62] Sih, G.C., 2002. A field model interpretation of crack initiation and growth behavior in ferroelectric ceramics: change of poling direction and boundary condition. Theoretical and Applied Fracture mechanics, 38, 1-14.
[63] Chen, Z., 2007. Dynamic analysis of a piezoelectric material with an impermeable penny-shaped crack under pure torsional wave. Key Engineering Materials, 345, 433-436.
[64] Leslie, B.S., Yael, M., Lucy, S., 2008. The M-integral for calculation intensity factors of an impermeable crack in a piezoelectric material. Engineering Fracture Mechanics, 75, 901-925.
[65] Wang, B.L., Mai, Y.W., 2004. Impermeable crack and permeable crack assumptions, which one is more realistic? ASME Journal of Applied Mechanics, 71, 575-578.
[66] Suo, Z., 1991. Mechanics concepts for failure on ferroelectric ceramics. Smart Structures and Materials, AD-24/AMD-123, ASME, USA
[67] Pak, Y.E., 1992. Linear electro-elastic fracture mechanics of piezoelectric materials. International Journal of Fracture, 54, 79-100.
[68] Park, S., Sun, C.T., 1995. Fracture criteria for piezoelectric ceramics. Journal of American Ceramic Society, 78, 1475-1480.
[69] Zhang, T.Y., Wang, T., Zhao, M., 2003. Failure behavior and failure criterion of conductive cracks (deep notches) in thermally depoled PZT-4 ceramics. Acta Materialia, 51, 4881-4895.
[70] Nam, B.G., Watanable, K., 2006. Energy release rate for piezoelectric body. JSME Part (A), 72, 772-779.
[71] Tong, X.H., Hou, M.S., Li, Y.K., 2006. Energy release rate and electric effects for piezoelectric media with plane crack. Journal of China University of Petroleum, 30, 69-73.
[72] Sih, G..C., Zuo, J.Z., 2000. Multi-scale behavior of crack initiation and growth in piezoelectric ceramics. Theoretical and Applied Fracture Mechanics, 34, 123-141.
[73] Shen, S., Nishioka, T., 2000. Fracture of piezoelectric materials: energy density criterion. Theoretical and Applied Fracture Mechanics, 33, 57-65.
[74] Soh, A.K., Fang, D.N., Lee, K.L., 2001. Fracture analysis of piezoelectric materials with defects using energy density theory. International Journal of Solids and Structures, 38, 8331-8344.
[75] Chue, C.H., Chen, C.D., 2003. Fracture mechanics analysis of a composite piezoelectric strip with an internal semi-infinite electrode. Theoretical and Applied Fracture Mechanics, 39, 291–314.
[76] Chue, C.H., Weng, S.M., 2005. Fracture analysis of piezoelectric materials with an arbitrarily oriented crack using energy density theory, Computers and Structures, 83, 1251–1265.
[77] Boldrini, C., Viola, E., 2008. Crack energy density of a piezoelectric material under general lectromechanical loading. Theoretical and Applied Fracture Mechanics, 49, 321-333.
[78] Lin, S., Narita, F., Shindo, Y., 2003. Comparison of energy release rate and energy density criteria for a piezoelectric layered composite with a permeable and impermeable crack normal to interface. Theoretical and Applied Fracture Mechanics, 39, 229-243.
[79] Sih, G..C., 1973. Some basic problems in fracture mechanics and new concepts, Journal of Engineering Fracture Mechanics, 5, 365–377.
[80] Sih, G.C., 1974. Strain energy density factor applied to mixed mode crack problems. International Journal of Fracture, 10, 305-322.
[81] Sih, G.C., 1973-1981. Mechanics of Fracture Vol. I-VII. Martinus Nijhoff, Netherlands.
[82] Kargarnovin, M.H., Shahani, A.R., Fariborz, S.J., 1991. Analysis of an isotropic finite wedge under antiplane deformation. International Journal of Solids and Structures, 34, 113-128.
[83] Lin, R.L., Ma, C.C., 2003. Analytic full-field solutions of screw dislocation in finite annular wedges. Chinese Journal of Mechanics Series A, 19, 83-98.
[84] Lin, R.L., Ma, C.C., 2004. Theoretical full-field analysis of dissimilar isotropic composite annular wedges under anti-plane deformations. International Journal of Solids and Structures, 41, 6041-6080.
[85] Chue, C.H., Liu, W.J., 2004. Comments on “Analysis of an isotropic finite wedge under antiplane deformation”. International Journal of Solids and Structures, 41, 5023-5034.
[86] Tiersten, H.F., 1969. Linear Piezoelectric Plate Vibrations. Plenum Press, New York.
[87] IEEE, 1988. IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176-1987, The Institute of Electrical and Electronics Engineers, Inc., New York.
[88] Nye, J.F., 1985. Physical Properties of Crystals. Clarendon Press, Oxford.
[89] 鄭世裕, 1994. 陶瓷技術手冊. 中華民國產業科技發展協進會, 台北.
[90] Boresi, A.P., Chong, K.P., 2000. Elasicity in Engineering Mechanics. Second edition, John Wiley & Sons, New York.
[91] Sneddon, I.N., 1972. The Use of Integral Transforms. McGraw-Hill, New York.
[92] Kreyszig, E., 1968. Key to Kreyszig’s Advanced Engineering Mathematics. Second edition, Shin-Lu, Taipei.
[93] Edminister, J.A., 1993. Theory and Problems of Electromagnetics. Second edition, McGraw-Hill, New York.
[94] Liu, W.J., Chue, C.H., 2007. Electroelastic analysis of a piezoelectric finite wedge with mixed type boundary conditions under a pair of concentrated shear forces and free charges. Theoretical and Applied Fracture Mechanics, 48, 203-224.
[95] Tuma, J.J., 1979. Engineering mathematics handbook: definitions, theorems, formulas tables. Second Enlarged and Revised Edition, McGraw-Hill, New York.
[96] Broek, D., 1994. Elementary Engineering Fracture Mechanics. Noordhoff International Pub., Holland.
[97] Auld, B.A., 1973. Acoustic Fields and Waves in Solids. Wiley, New York.
[98] Li, X. F., Fan, T.Y., 2000. Semi-infinite antiplane crack in a piezoelectric material. International Journal of Fracture. 102, L55-L60.
[99] Sih, G.C., Chen, E.P., 1970. Moving cracks in a strip under tearing action. Journal of the Franklin Institute. 290, 25-35.
[100] Murakami, T., 1987. Sterss Intensity Factors Handbook. The Society of Science, Japan.