簡易檢索 / 詳目顯示

研究生: 許家維
Hsu, Chia-Wei
論文名稱: 碳、鎳、白金之薄膜及奈米級薄膜之特性研究
Characteristics of C、Ni、Pt Thin films/Nano-scaled Thin Films
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 109
中文關鍵詞: 薄膜白金
外文關鍵詞: Ni, C, thin film, Pt
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    奈米科技在20世紀引起廣泛的注意,當物質的尺寸縮小到一定程度會出現一些極端或意想不到的性質出現有別於傳統塊材的性質。例如,被飯島澄男發現的奈米碳管,其具有高的抗拉強度、優異的彎曲性和高的導電性。此外除了奈米碳管具有優越的性質,其他如奈米顆粒也同樣具有一些優越的性質如尺寸效應和表面或是界面效應。奈米科技的發展足以將整個圖書館的館藏儲存在一個小小的晶片上。另外,塊材物質的性質已被研究好幾年且其巨觀的性質也已經到達極限,很難藉由熱處理或是冷加工的方式來進一步提升塊材的性質。但是藉由在表面上沉積一層奈米級的薄膜可以大大地改變塊材的表面性質與增加一些多餘的性質於其塊材表面。在這個研究中著重於碳、鎳、白金之微米級和奈米級的薄膜的特性,這些薄膜由直流磁控濺鍍系統所沉積,薄膜厚度是由橢偏儀和掃瞄式電子顯微鏡所量測,其微結構是藉由高解析式電子顯微鏡、低掠角入射X光繞射和拉曼光譜來觀測,其電性和光學性質是由四點探針和紫外線-可見光-紅外線分光光譜儀所測定。

    Abstract
    Nano-technology attracts most attention in the twentieth century. As a result of dimensional shrinkage of substance, there are some extreme or unexpected properties different from traditional properties of bulk. For example, the carbon nano-tube (CNT) discovered by I-ijima takes on a lot of superior properties such as high tension strength, good ability to bend, and better conductivity than copper. In addition, nano-particle also shows exceptional effects like size effect and surface or interface effect. Nano-technology makes it possible that the all of the information of the library could be stored on a small chip due to greatly minimizing its size. The properties of bulk have been research for many years and their macro behaviors also reach the limitation. It is difficult to greatly upgrade properties of bulk by means of heat treatment or cold work. But the surface coating with nano-scale thin film on it would extremely change properties on surface and add some excess characteristics on it. In this study, it is focused on characteristics of micro- and nano-scale film for C, Ni, and Pt. These thin films were deposited by DC magnetron sputtering system. The thickness of the thin film were estimated by ellipsometry and scanning electron microscopy. The microstructure were investigated by high resolution transmission electron microscopy, glazing incident X-ray diffraction, and Raman. The properties of electricity and optics were measured by four point probe and UV-VIS-IR spectrometry, respectively.

    總目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 總目錄 Ⅳ 圖目錄 Ⅶ 表目錄 5 第一章 序論 1 第二章 理論基礎與文獻回顧 6 2-1 濺鍍理論 6 2-1-1 電漿原理 6 2-1-2 濺射現象 10 2-2 薄膜沉積原理 11 2-2-1 沉積現象 11 2-2-2 薄膜表面及截面型態結構 14 2-3 文獻回顧 14 2-4 沉積方法 16 2-4-1 離子束 16 2-4-2 質量選擇離子束 17 2-4-3 濺鍍 18 2-4-4 陰極電弧 19 2-4-5 脈衝雷射沉積 20 2-4-6 奈米金屬微粒的表面電漿共振 21 第三章 實驗方法與儀器步驟 40 3-1 實驗流程 40 3-2 儀器設備 41 3-3 實驗材料 42 3-3-1 基板材料 42 3-3-2 反應氣體與靶材 42 3-3-3 矽基材清洗 42 3-3-4 玻璃基材清洗 42 3-3-5 沉積條件 43 3-4 特性分析 43 3-4-1 薄膜結晶結構分析 43 3-4-2 截面與表面型態觀察 43 3-4-3 微區拉曼光譜分析 44 3-4-4 膜厚量測 44 3-4-5 光學性質量測 44 3-4-6 電性量測 44 3-4-7 微結構分析 44 3-4-8 TEM觀察試片之製作步驟 44 第四章 結果與討論 52 4-1 膜厚與鍍膜速率分析 52 4-1-1 在矽上的膜厚測定 52 4-1-2 在玻璃上的膜厚測定 56 4-1-3 白金和鎳在碳上的膜厚量測與碳在白金、和矽基 板上的膜厚量測 57 4-2 低掠角X-ray繞射分析 68 4-2-1 鎳膜低掠角X-ray繞射分析 68 4-2-2 白金膜低掠角X-ray繞射分析 68 4-3 四點探針電性量測 74 4-4 拉曼光譜量測 77 4-4-1 碳膜在玻璃基板上的拉曼光譜 77 4-4-2 碳膜在矽基板的拉曼光譜 78 4-4-3 碳膜在鎳上的拉曼光譜 78 4-4-4 碳膜在白金上的拉曼光譜 79 4-4-5 討論 80 4-5 HR-TEM微結構分析 88 4-6 光學性質和電性分析 92 4-6-1 碳薄膜的光學性質 92 4-6-2 鎳薄膜與白金薄膜的光學性質和電性 93 4-6-3 碳薄膜上沉積碳膜的光學性質 95 第五章 結論 103 參考文獻 104 圖目錄 Fig. 2-1 電漿溫度與壓力的關係 22 Fig. 2-2 直流與射頻濺鍍系統示意圖 23 Fig. 2-3 電漿電壓與電流的關係圖 24 Fig. 2-4 二平行電極板濺射現象示意圖 25 Fig. 2-5 電子在外加電場與磁場下運動的示意圖(a)電子運動方向 和電場與磁場平行,(b)電場為0,電子運動方向與磁場夾 一角度θ,(c) 電場不為0,電子運動方向與磁場和電場 夾一角度θ(d)電場與磁場垂直時,電子的運動方式 27 Fig. 2-6 塊材表面成核與表面張力示意圖 28 Fig. 2-7 三種表面結晶成長的模型,第一種是島狀(island)或 Volmer-Weber mode,第二種為層狀(Layer)結構或 Frank-van der Merwe mode,第三種為上兩種的混合,即 為島狀加層狀(island and layer)或是Stranski-Krastanov mode 29 Fig. 2-8 在不同工作壓力下和不同基板溫度下,薄膜表面與截面型 態結構 30 Fig. 2-9 三種不同的混成軌域示意圖 31 Fig. 2-10 碳的sp3、sp2與氫之三元相圖 33 Fig. 2-11 離子束裝置示意圖 34 Fig. 2-12 離子輔助濺鍍裝置示意圖 35 Fig. 2-13 陰極電弧系統裝置示意圖 36 Fig. 2-14 (a)單環形磁性過濾導管,(b)雙環形磁性過濾導管或S型 的彎曲過濾器 37 Fig. 2-15 離子能量的高斯分佈 38 Fig. 2-16 脈衝雷射沉積裝置示意圖 39 Fig. 2-17不同的離子流密度所佈植的銀奈米微粒的穿透率 40 Fig. 3-1儀器設備 42 Fig. 3-2 利於觀察之Cross Sectional View試片厚度 46 Fig. 3-3 研磨試片之尺寸大小 46 Fig. 3-4 試片清洗 46 Fig. 3-5 以N7號鑷子夾試片清洗 47 Fig. 3-6 以G1 glue對黏試片 47 Fig. 3-7 (A)先在夾子上貼上標籤紙,(B)最後以長尾夾加壓夾住試 片 48 Fig. 3-8 (A)以crystal bond在120℃下將試片黏接於研磨之模具 上,(B)為(A)圖之上視圖 48 Fig. 3-9 #400~#600的砂紙時,厚度大約是<100 μm 50 Fig. 3-10 #1200 的砂紙時,試片的兩端會圓掉,厚度大約是<50 μm 50 Fig. 3-11 試片的兩端圓掉,會有干射條紋出現,厚度大約是<1 μm 50 Fig. 3-12 (A) 用載玻片去沾黏銅環,(B)在立體OM的觀察下將AB 膠均勻推開,並將銅環黏上 51 Fig. 3-13 試片浸泡於丙酮溶液中約為10~20分鐘 51 Fig. 4-1 Ni,100 W,1×10-2 torr, 5 cm,(a) 5 s,3.7 nm (b) 15 s,10.5 nm (c) 30 s,18.9 nm (d) 45 s,29.2 nm 60 Fig. 4-2 Pt,100 W,1×10-2 torr,5 cm,(a) 5 s,7.8 nm (b) 15 s,19.3 nm (c) 30 s,37.9 nm 61 Fig. 4-3 Ni,100 W,1×10-2 torr,5 cm,(a) 1 min,5.5 nm (b) 3 min,15.3 nm (c) 5 min,23.8 nm (d) 10 min,44.1 nm 62 Fig. 4-4 Ni,100 W,1×10-2 torr,5 cm,(a) 3 min,132 nm (b) 5 min,206 nm (c) 10 min,420 nm 63 Fig. 4-5 Pt,100 W,1×10-2 torr,5 cm,(a) 1 min,68 nm (b) 3 min,215 nm (c) 5 min,323 nm (d) 10 min,661 nm 64 Fig. 4-6 白金、鎳、碳薄膜厚度在矽晶片上對時間的變化 65 Fig. 4-7 白金、鎳、碳薄膜厚度在玻璃上對時間的變化 66 Fig. 4-8 白金和鎳薄膜厚度在碳膜上對時間的變化 67 Fig. 4-9 碳膜厚度在白金膜、鎳膜和矽基板上對不同時間的變化 68 Fig. 4-10 (a)鎳的低掠角X-ray繞射強度,(b)鎳的JCPD卡 71 Fig. 4-11 鎳膜不同結晶面的相對強度百分比對沉積時間的變化 72 Fig. 4-12 (a)白金的低掠角X-ray繞射強度,(b)白金的JCPD卡 73 Fig. 4-13 白金膜不同結晶面的相對強度百分比對沉積時間的變化 74 Fig. 4-14鎳薄膜的片電阻對其厚度的變化 76 Fig. 4-15白金薄膜的片電阻對其厚度的變化 77 Fig. 4-16碳在玻璃上的拉曼光譜 83 Fig. 4-17碳在矽上的拉曼光譜 84 Fig. 4-18碳在鎳上的拉曼光譜 85 Fig. 4-19碳在白金上的拉曼光譜 86 Fig. 4-20 G band位置變化與強度比對sp3鍵結含量的變化 87 Fig. 4-21 G band位置變化與強度比對sp2鍵結含量的變化 88 Fig. 4-22 (a)低倍率TEM照片,(b)選區繞射 90 Fig. 4-23 標號1之高倍率TEM照片 91 Fig. 4-24 標號2之高倍率TEM照片 92 Fig. 4-25 (a)碳薄膜的穿透率對波長的變化,(b)碳膜的光學能隙 97 Fig. 4-26 98 Fig. 4-27 (a)鎳薄膜的穿透率對撥長的變化(b)鎳薄膜的電阻係數對 99 Fig. 4-28 鎳薄膜的電阻係數和穿透率對厚度的變化 100 Fig. 4-29 (a)白金薄膜的穿透率對波長的變化(b)白金薄膜的電阻係 數對厚度的變化 101 Fig. 4-30 白金薄膜的電阻係數和穿透率對厚度的變化 102 Fig. 4-31不同薄膜的穿透率比較 103 表目錄 Table 1-1 奈米顆粒尺寸與表面原子數的關係 3 Table 1-2 不同奈米顆粒的粒徑與比表面積,表面原子數比例,表面 能和一個粒子中的原子數的關係 3 Table 2-1 不同氣體對不同靶材的濺鍍產率 26 Table 2-2 不同形式的碳,其sp3含量、氫含量與密度 32 Table 4-1 原子質量 54 Table 4-2 昇華熱 55 Table 4-3 原子直徑 56 Table 4-4 在矽與玻璃上的比較 57 Table 4-5 在矽、玻璃與碳上的比較 58 Table 4-6 在玻璃上的D和G band位置與強度比 78 Table 4-7 在矽上的D和G band位置與強度比 79 Table 4-8 在鎳上的D和G band位置與強度比 80 Table 4-9 在白金上的D和G band位置與強度比 81 Table 4-10 白金薄膜吸收的光能量 95

    [1] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature (London) 354 (1991) 56
    [2] 蔡樹芝、牟季美、張立德等,物理學報,41(10),1620(1992)
    [3] Zhang L D,Mo C M, Wang T,et al., Structure and Bond Properties of Compacted and Heat-treated Silicon Nitride Particles, Phys. Stat. Sol., (a), 136, 291(1993)
    [4] Hahn H, Logas J, Averback R S, J. Mater. Res., 5(3), 609(1990)
    [2] Halperin W P, Rev. of Modern Phys., 58,532(1986)
    [6] 張立德,科學,45,13(1993)
    [7] Ball P, Garwin L, Science at The Atomic Scale, Nature, 355, 761(1992)
    [8] 蘇品書,超微粒子材料技術,復漢出版社(1989)
    [9] W.Barthlott and C.Neinhuis, Planta 202(1991)
    [10] Ross H, Bending J, Hecht S, Sensitized Photocatalytical Oxidation of Terbutylazine, Solar Energy Mater. Solar Cells, 33, 475(1994)
    [11] I. Langmuir, The Interaction of Electron and Positive Ion Space Charge in Cathode Sheaths, Phys. Rev. 33, 954(1929)
    [12] D. S. Rickerby and A. Matthews, Advanced Surface Coatings: a Habdbook of Surface Engineering, Blackie & Son Ltd., London (1991)196
    [13] J. Venables, Nucleation and Growth of Thin Films, Rep. Phys., 47(1984), 399-459
    [14] J.A. Thornton, Influence of Apparatus Geometry and Deposition Condition on the Structure and Topography of Thick Sputtered Coating, Influence of Apparatus Geometry and Deposition Condition on The Structure and Topography of thick Sputtered Coating, J. Vac. Sci. Technol., 11[4] (1974), 666
    [15] J.A. Thornton, Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings, J. Vac. Sci. Technol., 12[4] (1975), 830
    [16] J. Robertson, Prog. Solid State Chem. 21 (1991) 199
    [17] J. Robertson, Surf. Coatings Technol. 50 (1992) 185
    [18] J. Robertson, Amorphous Carbon, Adv. Phys. 35 (1986) 317
    [19] P. Koidl, C. Wagner, B. Dischler, J Wagner, M. Ramsteiner, Mater. Sci. Forrm 52 (1990) 41
    [20] H. Tsai, D.B Bogy, Critical Review Characterization of Diamondlike Carbon Films and Their Application as Overcoats on Thin-Film Media for Magnetic Recording, J. Vac. Sci. Technol. A 5 (1987) 3287
    [21] D.R. Mckenzie, Tetrahedral Bonding in Amorphous Carbon, Rep. Prog. Phys. 59 (1996) 1611
    [22] Y. Lifshitz, Hydrogen-free Amorphous Carbon Films-correlation between Growth Conditions and Properties, Diamond Rel. Mater. 5 (1996) 388
    [23] Y. Lifshitz, Diamon-like Carbon Present Status Diamond Rel. Mater. 8 (1999) 1659
    [24] A.A. Voevodin, M.S. Donley, Review-preparation of Amorphous Diamond-like Carbon by Pulsed Laser Deposition-a Critical Review, Surf. Coatings Technol. 82 (1996) 199
    [25] S.R.P. Silva, J.D. Carey, R.U.S Khan, E.G. Gerstner, J.V. Anguita, in: H.S. Nalwa (Ed.), Handbook of Thin Film Materials, Academic Press, New York, 2002
    [26] J.C. Angus, C.C. Hayman, Low-pressure Metastable Growth of Diamond and Diamondlike Phases, Science 241 (1988) 913
    [27] J.E. Field, Properties of Diamond, Academic Press, London, 1993
    [28] F.G. Celi, J.E. Butler, Ann. Rev. Phys. Chem. 42 (1991) 643
    [29] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, London, 1996
    [30] B.T. Kelly, Physics of Graphite, Applied Science Publishers, London, 1981
    [31] D.C. Green, D.R. Mckenzie, P.B. Lukins, Mater. Sci. Forum 52 (1990) 103
    [32] P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, J. Koskinen, Properties of Filtered-ion –deposited Diamondlike Carbon as a Function of Ion Energy, Phys. Rev. B 48 (1993) 4777
    [33] G.M. Pharr, D.L. Callahan, S.D. McAdams, T.Y. Tsui, S. Anders, A. Anders, J.W. Ager, I.G. Brown, C.S. Bhatia, S.R.P. Silva, J. Robertson, Hardness Elastic Modulus and Structure of Very Hard Carbon films Produced by Cathodic-arc Deposition With Substrate Pulse Biasing Appl. Phys. Lett. 68 (1996) 779
    [34] F. Li, J.S. Lannin, Radial Distribution Function of Amorphous Carbon, Phys. Rev. Lett. 65 (1990) 1905
    [35] M.F. Ashby, D.R.H. Jones, Engineering Materials, Pergamon Press, Oxford, 1980, pp. 58, 78
    [36] W. Jacob, W. Moller, on The Structure of Thin Hydrocarbon Films, Appl. Phys. Lett. 63 (1993) 1771
    [37] M. Weiler, S. Sattel, K. Jung, H. Ehrhardt, V.S. Veerasamy, J. Robertson, Highly Tetrahedral Diamond-like Amorphous Hydrogenated Carbon Prepared from a Plasma Beam source, Appl. Phys. Lett. 64 (1994) 2797
    [38] S. Aisenberg, R Chalbot, Ion-beam Deposition of Thin Films of Diamondlike Carbon, J. Appl. Phys. 42 (1971) 2953
    [39] J.C. Angus, P. Koidl, S. Domitz, in: J. Mort. (Ed.), Plasma Deposited Thin Films, CRC Press, Boca Raton,1986
    [40] E.G. Spencer, P.H. Schmidt, D.C. Joy, F.J. Sansalone, Ion-beam-deposited Polycrystalline Diamondlike Films, Appl. Phys. Lett. 29 (1976) 118
    [41] C. Weissmantel, K. Bewilogua, D. Dietrich, H.J. Erler, H. Hinnerberg, S. Klose, W. Nowick, G. Reisse, Structure and Properties of Qusi-amorphous Films Prepared by Ion Beam Techniques, Thin Solid Films 72 (1980) 19
    [42] T. Mori, Y. Namba, Hard Diamondlike Carbon Films Deposited by Ionized Deposition of Methane Gas, J. Vac. Sci. Technol. A 1 (1983) 23
    [43] W.M. Lau, I. Bello, X. Feng, L.J. Huang, Q Fugang, Y. Zhenyu, R. Zhizhang, S.T. Lee, Direct Ion Beam Deposition of Carbon Films on Silicon in The Ion Energy Range of 15-500 eV, J. Appl. Phys. 70 (1991) 5623
    [44] F. Rossi, B. Andre, A. vanVeen, P.E. Mijenarends, H. Schut, M.P. Delplancke, W. Gissler, J. Haupt, G. Lucazeau, L. Abello, Effect fo Ion Beam Assistance on The Microstructure of Nonhydrogenated Amorphous Carbon, J. Appl. Phys. 75 (1994) 3121
    [45] H.R. Kaufmann, Technology of Ion Beam Sources Used in Sputtering, J. Vac. Sci. Technol. 15 (1978) 272
    [46] R. Locher, C. Wild, P. Koidl, Sur. Coatings Technol. 47 (1991) 426
    [47] B. Druz, R. Ostan, S. Distefano, Diamond-like Carbon Films Deposited Using a Broad Uniform Ion Beam from an RF Inductively Coupled CH4-plasma Source, A. Hayes, V. Kanarov, V. Polyakov, Diamond Rel. Mater. 7 (1998) 965
    [48] J. Schwan, S. Ulrich, H. Roth, H Ehrhardt, S.R.P. Silva, J. Robertson, R. Samlenski, Tetrahedral Amorphous Carbon Films Prepared by Magnetron Sputtering and DC Ion Plating, J. Appl. Phys. 79 (1996) 1416
    [49] J.J. Cuomo, J.P. Doyle, J. Bruley, J.C. Liu, Sputter Deposition of Dense Diamond-like Carbon Films at Low Temperature, Appl. Phys. Lett. 58 (1991) 466
    [50] I.G. Brown, Cathodic Arc Deposition of Films, Ann. Rev. Mater. Sci. 28 (1998) 243
    [51] S. Anders, A. Anders, I.G. Brown, Macroparticle-free thin Films Produced by an Efficient Vacuum Arc Deposition Technique, J. Appl. Phys. 74 (1993) 4239
    [52] M. Chhowalla, J. Robertson, C.W. Chen, S.R.P. Silva, G.A.J. Amaratunga, Influence of Ion Energy and substrate Temperature on the Optical and Electronic Properties of Tetrahedral Amorphous Carbon (ta-C) films, J. Appl. Phys. 81 (1997) 139
    [53] V.I. Merkulow, D.H. Lowndes, G.E. Jellison, A.A Puretzky, D.B. Geohegan, Structure and Optical Properties of Amorphous Diamond Films Prepared by ArF Laser Ablation as a Function of Carbon Ion Kinetic Energy, Appl. Phys. Lett. 73 (1998) 2591
    [54] A.L. Stepanov, V.N. Popok, Nanostructuring of Silicate Glass under Low-energy Ag-ion Implantation, Suface Science 566-568 (2004) 1250-1254
    [55] Milton Ohring, Materials Science of Thin Films, Second Edition, p.177
    [56] W.D Westwood, Calculation of Deposition Rate In Diode Sputtering System, J. Vac. Sci. Technol. 15 (1978) 1
    [57] K. Fuchs, Proc. Cambridge Philos. Sco. 34 (1938) 100
    [58] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of Disordered and Amorphous Carbon, Phys. Rev. B 61 (2000) 14095
    [59] MARK FOX, Optical Properties of Solids, p3
    [60] Haowen Huang, Shufeng Zhang, Li Qi, Xiao Yu, Yi Chen, Microwave-assisted deposition of uniform thin gold film on glass surface, Surface & Coatings Technology 200 (2006) 4389-4396

    下載圖示 校內:2008-07-24公開
    校外:2008-07-24公開
    QR CODE