| 研究生: |
許家維 Hsu, Chia-Wei |
|---|---|
| 論文名稱: |
碳、鎳、白金之薄膜及奈米級薄膜之特性研究 Characteristics of C、Ni、Pt Thin films/Nano-scaled Thin Films |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 薄膜 、白金 、鎳 、碳 |
| 外文關鍵詞: | Ni, C, thin film, Pt |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
奈米科技在20世紀引起廣泛的注意,當物質的尺寸縮小到一定程度會出現一些極端或意想不到的性質出現有別於傳統塊材的性質。例如,被飯島澄男發現的奈米碳管,其具有高的抗拉強度、優異的彎曲性和高的導電性。此外除了奈米碳管具有優越的性質,其他如奈米顆粒也同樣具有一些優越的性質如尺寸效應和表面或是界面效應。奈米科技的發展足以將整個圖書館的館藏儲存在一個小小的晶片上。另外,塊材物質的性質已被研究好幾年且其巨觀的性質也已經到達極限,很難藉由熱處理或是冷加工的方式來進一步提升塊材的性質。但是藉由在表面上沉積一層奈米級的薄膜可以大大地改變塊材的表面性質與增加一些多餘的性質於其塊材表面。在這個研究中著重於碳、鎳、白金之微米級和奈米級的薄膜的特性,這些薄膜由直流磁控濺鍍系統所沉積,薄膜厚度是由橢偏儀和掃瞄式電子顯微鏡所量測,其微結構是藉由高解析式電子顯微鏡、低掠角入射X光繞射和拉曼光譜來觀測,其電性和光學性質是由四點探針和紫外線-可見光-紅外線分光光譜儀所測定。
Abstract
Nano-technology attracts most attention in the twentieth century. As a result of dimensional shrinkage of substance, there are some extreme or unexpected properties different from traditional properties of bulk. For example, the carbon nano-tube (CNT) discovered by I-ijima takes on a lot of superior properties such as high tension strength, good ability to bend, and better conductivity than copper. In addition, nano-particle also shows exceptional effects like size effect and surface or interface effect. Nano-technology makes it possible that the all of the information of the library could be stored on a small chip due to greatly minimizing its size. The properties of bulk have been research for many years and their macro behaviors also reach the limitation. It is difficult to greatly upgrade properties of bulk by means of heat treatment or cold work. But the surface coating with nano-scale thin film on it would extremely change properties on surface and add some excess characteristics on it. In this study, it is focused on characteristics of micro- and nano-scale film for C, Ni, and Pt. These thin films were deposited by DC magnetron sputtering system. The thickness of the thin film were estimated by ellipsometry and scanning electron microscopy. The microstructure were investigated by high resolution transmission electron microscopy, glazing incident X-ray diffraction, and Raman. The properties of electricity and optics were measured by four point probe and UV-VIS-IR spectrometry, respectively.
[1] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature (London) 354 (1991) 56
[2] 蔡樹芝、牟季美、張立德等,物理學報,41(10),1620(1992)
[3] Zhang L D,Mo C M, Wang T,et al., Structure and Bond Properties of Compacted and Heat-treated Silicon Nitride Particles, Phys. Stat. Sol., (a), 136, 291(1993)
[4] Hahn H, Logas J, Averback R S, J. Mater. Res., 5(3), 609(1990)
[2] Halperin W P, Rev. of Modern Phys., 58,532(1986)
[6] 張立德,科學,45,13(1993)
[7] Ball P, Garwin L, Science at The Atomic Scale, Nature, 355, 761(1992)
[8] 蘇品書,超微粒子材料技術,復漢出版社(1989)
[9] W.Barthlott and C.Neinhuis, Planta 202(1991)
[10] Ross H, Bending J, Hecht S, Sensitized Photocatalytical Oxidation of Terbutylazine, Solar Energy Mater. Solar Cells, 33, 475(1994)
[11] I. Langmuir, The Interaction of Electron and Positive Ion Space Charge in Cathode Sheaths, Phys. Rev. 33, 954(1929)
[12] D. S. Rickerby and A. Matthews, Advanced Surface Coatings: a Habdbook of Surface Engineering, Blackie & Son Ltd., London (1991)196
[13] J. Venables, Nucleation and Growth of Thin Films, Rep. Phys., 47(1984), 399-459
[14] J.A. Thornton, Influence of Apparatus Geometry and Deposition Condition on the Structure and Topography of Thick Sputtered Coating, Influence of Apparatus Geometry and Deposition Condition on The Structure and Topography of thick Sputtered Coating, J. Vac. Sci. Technol., 11[4] (1974), 666
[15] J.A. Thornton, Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings, J. Vac. Sci. Technol., 12[4] (1975), 830
[16] J. Robertson, Prog. Solid State Chem. 21 (1991) 199
[17] J. Robertson, Surf. Coatings Technol. 50 (1992) 185
[18] J. Robertson, Amorphous Carbon, Adv. Phys. 35 (1986) 317
[19] P. Koidl, C. Wagner, B. Dischler, J Wagner, M. Ramsteiner, Mater. Sci. Forrm 52 (1990) 41
[20] H. Tsai, D.B Bogy, Critical Review Characterization of Diamondlike Carbon Films and Their Application as Overcoats on Thin-Film Media for Magnetic Recording, J. Vac. Sci. Technol. A 5 (1987) 3287
[21] D.R. Mckenzie, Tetrahedral Bonding in Amorphous Carbon, Rep. Prog. Phys. 59 (1996) 1611
[22] Y. Lifshitz, Hydrogen-free Amorphous Carbon Films-correlation between Growth Conditions and Properties, Diamond Rel. Mater. 5 (1996) 388
[23] Y. Lifshitz, Diamon-like Carbon Present Status Diamond Rel. Mater. 8 (1999) 1659
[24] A.A. Voevodin, M.S. Donley, Review-preparation of Amorphous Diamond-like Carbon by Pulsed Laser Deposition-a Critical Review, Surf. Coatings Technol. 82 (1996) 199
[25] S.R.P. Silva, J.D. Carey, R.U.S Khan, E.G. Gerstner, J.V. Anguita, in: H.S. Nalwa (Ed.), Handbook of Thin Film Materials, Academic Press, New York, 2002
[26] J.C. Angus, C.C. Hayman, Low-pressure Metastable Growth of Diamond and Diamondlike Phases, Science 241 (1988) 913
[27] J.E. Field, Properties of Diamond, Academic Press, London, 1993
[28] F.G. Celi, J.E. Butler, Ann. Rev. Phys. Chem. 42 (1991) 643
[29] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, London, 1996
[30] B.T. Kelly, Physics of Graphite, Applied Science Publishers, London, 1981
[31] D.C. Green, D.R. Mckenzie, P.B. Lukins, Mater. Sci. Forum 52 (1990) 103
[32] P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, J. Koskinen, Properties of Filtered-ion –deposited Diamondlike Carbon as a Function of Ion Energy, Phys. Rev. B 48 (1993) 4777
[33] G.M. Pharr, D.L. Callahan, S.D. McAdams, T.Y. Tsui, S. Anders, A. Anders, J.W. Ager, I.G. Brown, C.S. Bhatia, S.R.P. Silva, J. Robertson, Hardness Elastic Modulus and Structure of Very Hard Carbon films Produced by Cathodic-arc Deposition With Substrate Pulse Biasing Appl. Phys. Lett. 68 (1996) 779
[34] F. Li, J.S. Lannin, Radial Distribution Function of Amorphous Carbon, Phys. Rev. Lett. 65 (1990) 1905
[35] M.F. Ashby, D.R.H. Jones, Engineering Materials, Pergamon Press, Oxford, 1980, pp. 58, 78
[36] W. Jacob, W. Moller, on The Structure of Thin Hydrocarbon Films, Appl. Phys. Lett. 63 (1993) 1771
[37] M. Weiler, S. Sattel, K. Jung, H. Ehrhardt, V.S. Veerasamy, J. Robertson, Highly Tetrahedral Diamond-like Amorphous Hydrogenated Carbon Prepared from a Plasma Beam source, Appl. Phys. Lett. 64 (1994) 2797
[38] S. Aisenberg, R Chalbot, Ion-beam Deposition of Thin Films of Diamondlike Carbon, J. Appl. Phys. 42 (1971) 2953
[39] J.C. Angus, P. Koidl, S. Domitz, in: J. Mort. (Ed.), Plasma Deposited Thin Films, CRC Press, Boca Raton,1986
[40] E.G. Spencer, P.H. Schmidt, D.C. Joy, F.J. Sansalone, Ion-beam-deposited Polycrystalline Diamondlike Films, Appl. Phys. Lett. 29 (1976) 118
[41] C. Weissmantel, K. Bewilogua, D. Dietrich, H.J. Erler, H. Hinnerberg, S. Klose, W. Nowick, G. Reisse, Structure and Properties of Qusi-amorphous Films Prepared by Ion Beam Techniques, Thin Solid Films 72 (1980) 19
[42] T. Mori, Y. Namba, Hard Diamondlike Carbon Films Deposited by Ionized Deposition of Methane Gas, J. Vac. Sci. Technol. A 1 (1983) 23
[43] W.M. Lau, I. Bello, X. Feng, L.J. Huang, Q Fugang, Y. Zhenyu, R. Zhizhang, S.T. Lee, Direct Ion Beam Deposition of Carbon Films on Silicon in The Ion Energy Range of 15-500 eV, J. Appl. Phys. 70 (1991) 5623
[44] F. Rossi, B. Andre, A. vanVeen, P.E. Mijenarends, H. Schut, M.P. Delplancke, W. Gissler, J. Haupt, G. Lucazeau, L. Abello, Effect fo Ion Beam Assistance on The Microstructure of Nonhydrogenated Amorphous Carbon, J. Appl. Phys. 75 (1994) 3121
[45] H.R. Kaufmann, Technology of Ion Beam Sources Used in Sputtering, J. Vac. Sci. Technol. 15 (1978) 272
[46] R. Locher, C. Wild, P. Koidl, Sur. Coatings Technol. 47 (1991) 426
[47] B. Druz, R. Ostan, S. Distefano, Diamond-like Carbon Films Deposited Using a Broad Uniform Ion Beam from an RF Inductively Coupled CH4-plasma Source, A. Hayes, V. Kanarov, V. Polyakov, Diamond Rel. Mater. 7 (1998) 965
[48] J. Schwan, S. Ulrich, H. Roth, H Ehrhardt, S.R.P. Silva, J. Robertson, R. Samlenski, Tetrahedral Amorphous Carbon Films Prepared by Magnetron Sputtering and DC Ion Plating, J. Appl. Phys. 79 (1996) 1416
[49] J.J. Cuomo, J.P. Doyle, J. Bruley, J.C. Liu, Sputter Deposition of Dense Diamond-like Carbon Films at Low Temperature, Appl. Phys. Lett. 58 (1991) 466
[50] I.G. Brown, Cathodic Arc Deposition of Films, Ann. Rev. Mater. Sci. 28 (1998) 243
[51] S. Anders, A. Anders, I.G. Brown, Macroparticle-free thin Films Produced by an Efficient Vacuum Arc Deposition Technique, J. Appl. Phys. 74 (1993) 4239
[52] M. Chhowalla, J. Robertson, C.W. Chen, S.R.P. Silva, G.A.J. Amaratunga, Influence of Ion Energy and substrate Temperature on the Optical and Electronic Properties of Tetrahedral Amorphous Carbon (ta-C) films, J. Appl. Phys. 81 (1997) 139
[53] V.I. Merkulow, D.H. Lowndes, G.E. Jellison, A.A Puretzky, D.B. Geohegan, Structure and Optical Properties of Amorphous Diamond Films Prepared by ArF Laser Ablation as a Function of Carbon Ion Kinetic Energy, Appl. Phys. Lett. 73 (1998) 2591
[54] A.L. Stepanov, V.N. Popok, Nanostructuring of Silicate Glass under Low-energy Ag-ion Implantation, Suface Science 566-568 (2004) 1250-1254
[55] Milton Ohring, Materials Science of Thin Films, Second Edition, p.177
[56] W.D Westwood, Calculation of Deposition Rate In Diode Sputtering System, J. Vac. Sci. Technol. 15 (1978) 1
[57] K. Fuchs, Proc. Cambridge Philos. Sco. 34 (1938) 100
[58] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of Disordered and Amorphous Carbon, Phys. Rev. B 61 (2000) 14095
[59] MARK FOX, Optical Properties of Solids, p3
[60] Haowen Huang, Shufeng Zhang, Li Qi, Xiao Yu, Yi Chen, Microwave-assisted deposition of uniform thin gold film on glass surface, Surface & Coatings Technology 200 (2006) 4389-4396