簡易檢索 / 詳目顯示

研究生: 盧俊男
Lu, Chun-Nan
論文名稱: 模型預測控制設計及於雙線性伺服系統之應用
Design of Model Predictive Control and Applied to a Twin Linear Servo System
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 82
中文關鍵詞: 模型預測控制同動控制雙線性伺服系統
外文關鍵詞: twin linear servo system, synchronous control, model predictive control
相關次數: 點閱:81下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 模型預測控制(Model Predictive Control)是一種以受控體模型為基礎的進階控制技術,其概念是以受控體之預測模型為基礎,採用即時計算二次最佳化性能指標和回授修正的策略,以克服受控對象之建模誤差、未知結構參數與外界環境等不確定因素的影響,有效地彌補一般控制理論面對複雜受控對象所無法處理之處,也改善了無窮時域最佳控制只適用在非時變系統的不足。
    本研究旨在探討模型預測控制策略,及提出一相關控制參數設計流程,並應用於雙線性馬達同動系統,透過模型預測控制處理多變數系統的優勢,提出一應用模型預測控制之整合型同動控制架構。此方式能交互回授各軸之輸出資訊,且統整了每軸之迴路控制器,以達到控制上之耦合,並藉由模型預測控制之移動時域(Receding Horizon)最佳化,克服了一般有限時域最佳控制無法即時且連續計算之問題,即時地對系統不同步之行為進行補償,有效降低同動誤差,達到協調各軸運動及提升系統同步性能之效果。實驗結果顯示,不論雙線性馬達間是否存在耦合機構,本整合型同動控制架構皆能有效降低雙軸之同動誤差,尤其在高速(700mm/sec)運行時,更可明顯改善雙馬達運動不同步之現象。

    Model Predictive Control (MPC) is a popular method for the control of industrial process systems such as chemical plants and oil refineries since the 1980s. The basic concept of MPC is to solve an on-line optimization problem to compute the optimal control input sequence over a finite future. The main characteristic is that only the first element of the control sequence is implemented as the current input in the repeated calculation. Hence, it is more suitable for time-varying systems than conventional infinite horizon control.
    Therefore, this thesis proposes an integrated control scheme which is applied to the synchronous control of a twin linear servo system by utilizing MPC for its superiority to deal with multivariable systems. The proposed method can control the movement of each axis based on the information of the other axes to eliminate the asynchronous behavior of two linear motors. The experimental results demonstrate that the proposed control scheme can reduce the synchronization error effectively with/without a coupled mechanism between the linear motors, particularly at high speed movement (700mm/sec).

    中文摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XI 第一章 緒論 1 1.1 前言 1 1.2 研究背景與文獻回顧 3 1.2.1 模型預測控制文獻回顧 3 1.2.2 同步運動控制文獻回顧 4 1.3 研究目的 6 1.4 本文架構 6 第二章 模型預測控制 7 2.1 基本概念與原理 7 2.2 輸入增量 9 2.3 預測模型之建立 10 2.3.1 單步預測 10 2.3.2 多步預測 12 2.4 控制律之推導與轉移函數表示式 14 2.4.1 控制律之推導 14 2.4.2 轉移函數表示式 16 2.4.3 閉迴路極點位置與穩定條件 17 2.5 模型預測控制實現流程 19 第三章 平行式雙軸線性馬達之同動控制 20 3.1 線性伺服馬達之控制 20 3.2 模型預測控制之實現 22 3.2.1 代價函數之選擇 23 3.2.2 預測模型之建立與控制律之推導 25 3.2.3 控制參數之選擇與調整 26 3.3 同動控制架構 29 3.3.1 並聯式同動控制 29 3.3.2 串聯式同動控制 30 3.3.3 串並聯混合式同動控制 31 3.3.4 應用模型預測控制之整合型同動控制架構 32 3.4 應用模型預測控制之整合型同動控制架構之實現 35 3.4.1 代價函數之選擇 35 3.4.2 預測模型之建立 35 3.4.3 雙軸控制律之推導 37 3.4.4 控制參數之選擇與調整 39 第四章 實驗結果與討論 40 4.1 實驗架構與軟硬體簡介 40 4.1.1 軟體部分 42 4.1.2 硬體部分 42 4.2 系統參數與實驗概述 45 4.3 控制參數之設計與調整 47 4.3.1 改變控制參數對系統響應之影響 47 4.4 雙線性馬達同動控制實驗結果 52 4.4.1 無機構耦合之同動控制實驗結果 52 4.4.2 具機構耦合之同動控制實驗結果 54 第五章 結論與建議 62 5.1 結論 62 5.2 建議 63 參考文獻 65 附錄 A 模型預測控制轉移函數表示式之推導 70 附錄 B 一般伺服迴路控制器之設計 72 附錄 C 含位置與前饋控制之控制律推導 76 附錄 D LSF之特性探討與選用 78 附錄 E 雙軸控制律之推導 80 自述 82

    [1]J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model Predictive Heuristic Control: Applications to Industrial Processes,” Automatica, vol. 14, no. 5, pp. 413-428, 1978.
    [2]R. Rouhani and R. K. Mehra, “Model Algorithmic Control (MAC); Basic Theoretical Properties,” Automatica, vol. 18, no. 4, pp. 401-414, 1982.
    [3]C. R. Cutler and B .L. Ramaker, “Dynamic Matrix Control-A Computer Control Algorithm,” Proceedings of the Joint Automatic Control Conference, paper. WP5-B. pp.1-6, 1980.
    [4]D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized Predictive Control-Part I. The Basic Algorithm,” Automatica, vol. 23, no. 2, pp. 137-148, 1987.
    [5]D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized Predictive Control-Part II. Extensions and Interpretations,” Automatica, vol. 23, no. 2, pp. 149-160, 1987.
    [6]M. A. Lelic and M. B. Zarrop, “Generalized Pole-Placement Self-Tuning Controller. Part 1. Basic Algorithm,” International Journal of Control, vol. 46, no. 2, pp. 547-568, 1987.
    [7]W. H. Kwon and A. Pearson, “A Modified Quadratic Cost Problem and Feedback Stabilization of a Linear System,” IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 838-842, 1977.
    [8]W. H. Kwon and A. Pearson, “On Feedback Stabilization of Time-Varying Discrete Linear Systems,” IEEE Transactions on Automatic Control, vol. 23, no. 3, pp. 479-481, 1978.
    [9]W. H. Kwon and D. G. Byun , “Receding Horizon Tracking Control as a Predictive Control and its Stability Properties,” International Journal of Control, vol. 50, no. 3, pp. 1807-1824, 1989.
    [10]C. E. Garcia, D. M. Prett, and M. Morari, “Model Predictive Control: Theory and Practice—a Survey,” Automatica, vol. 25, no. 3, pp. 335-348, 1989.
    [11]S. J. Qin and T. A. Badgwell, “A Survey of Industrial Model Predictive Control Technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733-764, 2003.
    [12]FANUC, Parameter Manual of a-series AC Servo Motor, FANUC, 1994.
    [13]SIMENS, 840D/FM-NC Description of Functions, Special Functions (Part 3), SIMENS, 1999.
    [14]R. D. Lorenz and P.B. Schmidt, “Synchronized Motion Control for Process Automation,” Proceeding of the 1989 IEEE Industry Applications Annual Meeting, vol. 2, pp. 1693-1698, 1989.
    [15]Y. Koren, “Cross-Coupled Biaxial Computer Control for Manufacturing Systems,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 102, pp. 265–272, 1980.
    [16]K. Srinivasan and P. K. Kulkarni, “Cross-Coupled Control of Biaxial Feed Drive Servomechanisms,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 112, no. 2, pp. 225-231, 1990.
    [17]Y. Koren and C. C. Lo, “Variable-Gain Cross-Coupling Controller for Contouring,” Annals of the CIRP, vol. 40, pp. 371-374, 1991.
    [18]H. Y. Chuang and C. H. Liu, “Cross-Coupled Adaptive Feedrate Control for Multiaxis Machine Tools,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 113, no. 3, pp. 451-457, 1991.
    [19]H. Y. Chuang and C. H. Liu, “A Model-Referenced Adaptive Control Strategy for Improving Contouring Accuracy of Multiaxis Machine Tools,” IEEE Transactions on Industry Application, vol. 28, no. 1, pp. 221–227, 1992.
    [20]Y. Koren and C. C. Lo, “Advanced Controller for Feed Drivers,” Annals of the CIRP, vol. 41, pp. 689–698, 1992.
    [21]L. Feng, Y. Koren, and J. Borenstein, “A Model-Reference Adaptive Motion Controller for a Differential-Drive Mobile Robot,” Proceedings of the International Conference on Robotics and Automation, vol. 4, pp. 3091–3096, 1994.
    [22]S. S. Yeh, P. L. Hsu, “Analysis and Design of the Integrated Controller for Precise Motion Systems,” IEEE Transactions on Control Systems Technology, vol. 7, no. 6, pp. 706-717, 1999.
    [23]Q. Zhong, Y. Shi, J. Mo, and S. Huang, “A Linear Cross-Coupled Control System for High-Speed Machining,” International Journal, Advanced Manufacturing Technology, vol. 19, no. 8, pp. 558–563, 2002.
    [24]D. Yu, Q. Guo, Q. Hu, and J. Lili, “Position Synchronized Control of Dual Linear Motors Servo System Using Fuzzy Logic,” Proceedings of the 6th World Congress on Intelligent Control and Automation, vol. 2, pp. 8041-8044, 2006.
    [25]Y. Xiao and K. Y. Zhu, “A Cross-Coupling Reference Model Control Algorithm,” International Journal of Adaptive Control and Signal Processing, vol. 19, pp. 623-638, 2005.
    [26]M. Tomizuka, J. S. Hu, T. C. Chiu, and T. Kamano, “Synchronization of Two Motion Control Axes Under Adaptive Feedforward Control,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 114, pp. 196-203, 1992.
    [27]K. K. Tan, S. Y. Lim, S. Huang, H. F. Dou, and T. S. Giam, “Coordinated Motion Control of Moving Gantry Stages for Precision Applications Based on an Observer-Augmented Composite Controller,” IEEE Transactions on Control Systems Technology, vol. 12, no. 6, pp. 984-991, 2004.
    [28]J. A. Rossiter, Model-Based Predictive Control: A Practical Approach, CRC, USA, 2003.
    [29]A. Faanes and S. Skogestad, “Offset-Free Tracking of Model Predictive Control with Model Mismatch: Experimental Results,” Industrial & Engineering Chemistry Research, vol. 44, no. 11, pp. 3966-3972, 2005.
    [30]D. E. Kirk, Optimal Control Theory: An Introduction, Prentice Hall, USA, 1970.
    [31]B. Kpuvaritakis, J. A. Rossiter, and A. O. T. Chang, “Stable Generalised Predictive Control: An Algorithm with Guaranteed Stability,” IEE Proceedings D Control Theory and Applications, vol. 139, no. 4, pp. 349-362, 1992.
    [32]R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of Algorithm for Velocity Estimation from Discrete Position Versus Time Data,” IEEE Transactions on Industrial Electronics, vol. 39, pp. 594-599, 1992.
    [33]Hewlett Packard Technical Staff, HP3563A Operating Manual, Hewlett Packard, 1990.
    [34]Hewlett Packard Technical Staff, 控制迴路測試系統及應用, Hewlett Packard, 1990.
    [35]楊君賢,具機構耦合之雙線性伺服系統鑑別與控制,碩士論文,國立成功大學機械工程學系, 2003年。
    [36]吳楷聲,電動輪椅差速同動與電動輔助控制之設計與實現,碩士論文,國立成功大學機械工程學系,2005年。
    [37]李宜達,控制系統設計與模擬:使用MATLAB/SIMULINK,全華科技圖書,台北,1997年。
    [38]工業技術研究院機械工業研究所,機械工業雜誌252期,工業技術研究院,2004年。
    [39]張智星,MATLAB程式設計與應用,清蔚科技股份有限公司,新竹, 2000年。
    [40]工業技術研究院機械與系統研究所,PMC32韌體開發技術手冊,工業技術研究院機械與系統研究所,新竹,2002年。
    [41]楊宗誌,C++ Builder 6程式設計實務,文魁資訊,台北,2002年。
    [42]工業技術研究院機械與系統研究所,PMC32-6000硬體使用手冊,工業技術研究院機械與系統研究所,新竹,2002年。

    下載圖示 校內:2009-07-24公開
    校外:2011-07-24公開
    QR CODE