簡易檢索 / 詳目顯示

研究生: 張妙樺
Chang, Miao-Hua
論文名稱: 用蛋白質體策略尋找老鼠體內可能的ZBRK1同源蛋白
Identification of ZBRK1 homologue in mouse by proteomic approach
指導教授: 陳淑慧
Chen, Shu-Hui
共同指導教授: 王育民
Wang, Ju-Ming
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊研究所
Institute of Bioinformatics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 106
中文關鍵詞: 蛋白質體同源蛋白鋅手指蛋白
外文關鍵詞: proteomics, ZBRK1, ZNF350, homologue
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類體中有一個新穎的基因為zbrk1,其蛋白約為58kDa,此蛋白的特徵是N端與中間各帶有KRAB (Krüppel-associated box) 區域,以及八個鋅手指區域。ZBRK1另一個名稱是ZNF350 (zinc finger protein350,鋅手指蛋白350),並且其功能上會與BRCA1作用影響下游基因已知透過特定之ZBRK1的特定DNA序列(GGGxxxCAGxxxTTT) ,ZBRK1能與BRCA1和CtIP結合成為複合體,進而結合在ANG1上的啟動子,抑制該基因表現,而能扮演抑制腫瘤生成的功能。然而,人類ZBRK1基因雖已在已被報導,但老鼠體內相對應的同源蛋白基因卻至今未知,因此在本研究嘗試利用蛋白質體研究方法將老鼠體內可能的同源蛋白找出,以利生醫領域學者得以依此進行後續研究並進一步釐清其功能。這裡所利用的蛋白質體策略是由下而上的方式去尋找此目標蛋白。我們使用反相管柱分離蛋白萃取液,並透過ZBRK1抗體鑑定出老鼠體內可能的ZBRK1同源蛋白所存在的蛋白分離液,並將此分離出的樣品使用蛋白酶酵素切割分解經由質譜儀分析進行蛋白質身份鑑定,最後使用生物資訊工具軟體,在老鼠蛋白質體資料庫中鑑定出可能的候選蛋白。然而低量的蛋白以及複雜生物樣品是鑑定老鼠體內ZBRK1的瓶頸,故在此我們著重於萃取條件和分析純化平台做為成果的呈現。

    ZBRK1 gene, encodes a 58 kDa protein with an N-terminal KRAB (Krüppel-associated box) domain and eight central zinc fingers. The ZBRK1, also called ZNF350, is known to interact with BRCA1. Thus, BRCA1 can regulate it downstream targets through the consensus ZBRK1-binding motif, GGGxxxCAGxxxTTT. The previous studies discovered that the removal of BRCA1/CtIP/ZBRK1 repressor complex on ANG1 promoter lead to promoting tumor growth. Although human ZBRK1 is known, the mouse ZBRK1 has not been identified as yet. To identify mouse ZBRK1 for further studies, we try to find out human ZBRK1-homologue protein in mouse by a bottom-up proteomics approach. Combining with the identification of western blot by ZBRK1 antibody, we used reverse phase butyl column to enrich mouse homologous proteins. The result of western blot showed that ZBRK1 can be fractionated and concentrated in two fractions among a total of thirty fractions collected through a gradient elution by acetonitrile. These two mZBRK1 fractions were digested by trypsin and analyzed by LC/MS/MS. Based on protein identification results by using in-house zinc finger protein database we were able to deduce some protein sequences were the potential ZBRK1 homologue in mouse. However, low abundant mZBRK1 expression became a limiting factor in the identification of the mouse ZBRK1. Therefore, the extraction condition and the plateform of protein purification are the major points in this thesis.

    中文摘要.......................Ⅰ Abstract.......................Ⅱ 誌謝.........................Ⅲ Table of contents..................Ⅳ List of tables....................Ⅶ List of figures....................Ⅷ List of abbreviations................ⅩⅡ Chapter 1: Backgrounds and introductions 1 1.1 Introduction of proteomics..........1 1.2 Introduction of zinc finger protein 350...5 1.3 Introduction of bioinformatics.......10 1.4 Current methods..............12 1.5 Research motivation and goal........14 Chapter 2: Materials and methods 15 2.1 Materials and instruments ...........15 2.2 Liver tissue preparation............15 2.3 Nuclear protein extraction...........16 2.4 Western blot analysis.............17 2.5 HPLC separation................18 2.6 Trypsin digestion...............19 Chapter 3 : Results 20 3.1 Enrichment of human ZNF350 homologue proteins 20 3.1.1 Haemolysis reaction.............20 3.1.2 Sonication reaction.............21 3.2 HPLC separation 21 3.2.1 Optimization of gradients with standard proteins.......21 3.2.2 Separation of real samples...........22 3.3 Protein data base construction.......23 3.3.1 Solutions for database contamination.......23 3.3.2 Characteristic protein database construction...24 3.4 LTQ-Orbitrap MS/MS analysis.......25 3.4.1 Candidates of zinc finger protein........25 3.4.2 Candidates of zinc finger protein containing KRAB domain..........................25 3.4.3 Candidates of C2H2-type zinc finger protein containing KRAB domain.................26 3.4.4 The MS/MS results of candidates.........26 3.5 Bioinformatic tool prediction.......27 3.5.1 psi-BLAST results of human ZNF350........27 3.5.2 psi-BLAST results of bovine ZNF350........27 Chapter 4: Discussion .......29 4.1 Protein extraction for candidate protein ....29 4.2 Protein separation for candidate protein ....30 4.3 Combination of experimental and computational approaches.......................31 4.4 Conclusions.................32 Chapter 5: References....................34 Appendixes....................39

    1. Crick, F. (1970) Central dogma of molecular biology, Nature. 227, 561-3.
    2. Lander, E. S.Linton, L. M.Birren, B.Nusbaum, C.Zody, M. C.Baldwin, J.Devon, K.Dewar, K.Doyle, M.FitzHugh, W.Funke, R.Gage, D.Harris, K.Heaford, A.Howland, J.Kann, L.Lehoczky, J.LeVine, R.McEwan, P.McKernan, K.Meldrim, J.Mesirov, J. P.Miranda, C.Morris, W.Naylor, J.Raymond, C.Rosetti, M.Santos, R.Sheridan, A.Sougnez, C.Stange-Thomann, N.Stojanovic, N.Subramanian, A.Wyman, D.Rogers, J.Sulston, J.Ainscough, R.Beck, S.Bentley, D.Burton, J.Clee, C.Carter, N.Coulson, A.Deadman, R.Deloukas, P.Dunham, A.Dunham, I.Durbin, R.French, L.Grafham, D.Gregory, S.Hubbard, T.Humphray, S.Hunt, A.Jones, M.Lloyd, C.McMurray, A.Matthews, L.Mercer, S.Milne, S.Mullikin, J. C.Mungall, A.Plumb, R.Ross, M.Shownkeen, R.Sims, S.Waterston, R. H.Wilson, R. K.Hillier, L. W.McPherson, J. D.Marra, M. A.Mardis, E. R.Fulton, L. A.Chinwalla, A. T.Pepin, K. H.Gish, W. R.Chissoe, S. L.Wendl, M. C.Delehaunty, K. D.Miner, T. L.Delehaunty, A.Kramer, J. B.Cook, L. L.Fulton, R. S.Johnson, D. L.Minx, P. J.Clifton, S. W.Hawkins, T.Branscomb, E.Predki, P.Richardson, P.Wenning, S.Slezak, T.Doggett, N.Cheng, J. F.Olsen, A.Lucas, S.Elkin, C.Uberbacher, E.Frazier, M., et al. (2001) Initial sequencing and analysis of the human genome, Nature. 409, 860-921.
    3. Venter, J. C.Adams, M. D.Myers, E. W.Li, P. W.Mural, R. J.Sutton, G. G.Smith, H. O.Yandell, M.Evans, C. A.Holt, R. A.Gocayne, J. D.Amanatides, P.Ballew, R. M.Huson, D. H.Wortman, J. R.Zhang, Q.Kodira, C. D.Zheng, X. H.Chen, L.Skupski, M.Subramanian, G.Thomas, P. D.Zhang, J.Gabor Miklos, G. L.Nelson, C.Broder, S.Clark, A. G.Nadeau, J.McKusick, V. A.Zinder, N.Levine, A. J.Roberts, R. J.Simon, M.Slayman, C.Hunkapiller, M.Bolanos, R.Delcher, A.Dew, I.Fasulo, D.Flanigan, M.Florea, L.Halpern, A.Hannenhalli, S.Kravitz, S.Levy, S.Mobarry, C.Reinert, K.Remington, K.Abu-Threideh, J.Beasley, E.Biddick, K.Bonazzi, V.Brandon, R.Cargill, M.Chandramouliswaran, I.Charlab, R.Chaturvedi, K.Deng, Z.Di Francesco, V.Dunn, P.Eilbeck, K.Evangelista, C.Gabrielian, A. E.Gan, W.Ge, W.Gong, F.Gu, Z.Guan, P.Heiman, T. J.Higgins, M. E.Ji, R. R.Ke, Z.Ketchum, K. A.Lai, Z.Lei, Y.Li, Z.Li, J.Liang, Y.Lin, X.Lu, F.Merkulov, G. V.Milshina, N.Moore, H. M.Naik, A. K.Narayan, V. A.Neelam, B.Nusskern, D.Rusch, D. B.Salzberg, S.Shao, W.Shue, B.Sun, J.Wang, Z.Wang, A.Wang, X.Wang, J.Wei, M.Wides, R.Xiao, C.Yan, C., et al. (2001) The sequence of the human genome, Science. 291, 1304-51.
    4. Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P. & Trent, J. M. (1999) Expression profiling using cDNA microarrays, Nat Genet. 21, 10-4.
    5. Khan, J., Saal, L. H., Bittner, M. L., Chen, Y., Trent, J. M. & Meltzer, P. S. (1999) Expression profiling in cancer using cDNA microarrays, Electrophoresis. 20, 223-9.
    6. Pollack, J. R., Perou, C. M., Alizadeh, A. A., Eisen, M. B., Pergamenschikov, A., Williams, C. F., Jeffrey, S. S., Botstein, D. & Brown, P. O. (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays, Nat Genet. 23, 41-6.
    7. Yarmush, M. L. & Jayaraman, A. (2002) Advances in proteomic technologies, Annu Rev Biomed Eng. 4, 349-73.
    8. Hocquette, J. F. (2005) Where are we in genomics?, J Physiol Pharmacol. 56 Suppl 3, 37-70.
    9. Yates, J. R., 3rd, Speicher, S., Griffin, P. R. & Hunkapiller, T. (1993) Peptide mass maps: a highly informative approach to protein identification, Anal Biochem. 214, 397-408.
    10. Pappin, D. J., Hojrup, P. & Bleasby, A. J. (1993) Rapid identification of proteins by peptide-mass fingerprinting, Curr Biol. 3, 327-32.
    11. Hernandez, P., Muller, M. & Appel, R. D. (2006) Automated protein identification by tandem mass spectrometry: issues and strategies, Mass Spectrom Rev. 25, 235-54.
    12. Han, X., Aslanian, A. & Yates, J. R., 3rd. (2008) Mass spectrometry for proteomics, Curr Opin Chem Biol. 12, 483-90.
    13. Guerrera, I. C. & Kleiner, O. (2005) Application of mass spectrometry in proteomics, Biosci Rep. 25, 71-93.
    14. Feng, X., Liu, X., Luo, Q. & Liu, B. F. (2008) Mass spectrometry in systems biology: an overview, Mass Spectrom Rev. 27, 635-60.
    15. Tabet, J. C. & Rebuffat, S. (2003) Nobel Prize 2002 for chemistry: mass spectrometry and nuclear magnetic resonance, M S-Medecine Sciences. 19, 865-872.
    16. Krawczyk, Z. (2003) Visible macromolecules: Winners of the Nobel Prize in chemistry in 2002, Przemysl Chemiczny. 82, 63-65.
    17. Gove, H. E. (2003) Measuring mass: From positive rays to proteins., Isis. 94, 348-349.
    18. Wisniewski, J. R. (2008) Mass spectrometry-based proteomics: principles, perspectives, and challenges, Arch Pathol Lab Med. 132, 1566-9.
    19. Aebersold, R. & Mann, M. (2003) Mass spectrometry-based proteomics, Nature. 422, 198-207.
    20. Yates, J. R., Ruse, C. I. & Nakorchevsky, A. (2009) Proteomics by mass spectrometry: approaches, advances, and applications, Annu Rev Biomed Eng. 11, 49-79.
    21. Kocher, T. & Superti-Furga, G. (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks, Nat Methods. 4, 807-15.
    22. Krishna, S. S., Majumdar, I. & Grishin, N. V. (2003) Structural classification of zinc fingers: survey and summary, Nucleic Acids Res. 31, 532-50.
    23. Pabo, C. O., Peisach, E. & Grant, R. A. (2001) Design and selection of novel Cys2His2 zinc finger proteins, Annu Rev Biochem. 70, 313-40.
    24. Ganss, B. & Jheon, A. (2004) Zinc finger transcription factors in skeletal development, Crit Rev Oral Biol Med. 15, 282-97.
    25. Zheng, L., Pan, H., Li, S., Flesken-Nikitin, A., Chen, P. L., Boyer, T. G. & Lee, W. H. (2000) Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1, Mol Cell. 6, 757-68.
    26. Tan, W., Zheng, L., Lee, W. H. & Boyer, T. G. (2004) Functional dissection of transcription factor ZBRK1 reveals zinc fingers with dual roles in DNA-binding and BRCA1-dependent transcriptional repression, J Biol Chem. 279, 6576-87.
    27. Peng, H., Zheng, L., Lee, W. H., Rux, J. J. & Rauscher, F. J., 3rd. (2002) A common DNA-binding site for SZF1 and the BRCA1-associated zinc finger protein, ZBRK1, Cancer Res. 62, 3773-81.
    28. Somasundaram, K., Zhang, H., Zeng, Y. X., Houvras, Y., Peng, Y., Wu, G. S., Licht, J. D., Weber, B. L. & El-Deiry, W. S. (1997) Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1, Nature. 389, 187-90.
    29. Garcia, V., Dominguez, G., Garcia, J. M., Silva, J., Pena, C., Silva, J. M., Carcereny, E., Menendez, J., Espana, P. & Bonilla, F. (2004) Altered expression of the ZBRK1 gene in human breast carcinomas, J Pathol. 202, 224-32.
    30. Rutter, J. L., Smith, A. M., Davila, M. R., Sigurdson, A. J., Giusti, R. M., Pineda, M. A., Doody, M. M., Tucker, M. A., Greene, M. H., Zhang, J. & Struewing, J. P. (2003) Mutational analysis of the BRCA1-interacting genes ZNF350/ZBRK1 and BRIP1/BACH1 among BRCA1 and BRCA2-negative probands from breast-ovarian cancer families and among early-onset breast cancer cases and reference individuals, Hum Mutat. 22, 121-8.
    31. Desjardins, S., Belleau, P., Labrie, Y., Ouellette, G., Bessette, P., Chiquette, J., Laframboise, R., Lepine, J., Lesperance, B., Pichette, R., Plante, M. & Durocher, F. (2008) Genetic variants and haplotype analyses of the ZBRK1/ZNF350 gene in high-risk non BRCA1/2 French Canadian breast and ovarian cancer families, Int J Cancer. 122, 108-16.
    32. Tan, W., Kim, S. & Boyer, T. G. (2004) Tetrameric oligomerization mediates transcriptional repression by the BRCA1-dependent Kruppel-associated box-zinc finger protein ZBRK1, J Biol Chem. 279, 55153-60.
    33. Furuta, S., Wang, J. M., Wei, S., Jeng, Y. M., Jiang, X., Gu, B., Chen, P. L., Lee, E. Y. & Lee, W. H. (2006) Removal of BRCA1/CtIP/ZBRK1 repressor complex on ANG1 promoter leads to accelerated mammary tumor growth contributed by prominent vasculature, Cancer Cell. 10, 13-24.
    34. Gebelein, B., Fernandez-Zapico, M., Imoto, M. & Urrutia, R. (1998) KRAB-independent suppression of neoplastic cell growth by the novel zinc finger transcription factor KS1, J Clin Invest. 102, 1911-9.
    35. Bellefroid, E. J., Poncelet, D. A., Lecocq, P. J., Revelant, O. & Martial, J. A. (1991) The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins, Proc Natl Acad Sci U S A. 88, 3608-12.
    36. Urrutia, R. (2003) KRAB-containing zinc-finger repressor proteins, Genome Biol. 4, 231.
    37. Bellefroid, E. J., Marine, J. C., Ried, T., Lecocq, P. J., Riviere, M., Amemiya, C., Poncelet, D. A., Coulie, P. G., de Jong, P., Szpirer, C. & et al. (1993) Clustered organization of homologous KRAB zinc-finger genes with enhanced expression in human T lymphoid cells, EMBO J. 12, 1363-74.
    38. Jheon, A. H., Ganss, B., Cheifetz, S. & Sodek, J. (2001) Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone development, J Biol Chem. 276, 18282-9.
    39. Peng, H., Begg, G. E., Harper, S. L., Friedman, J. R., Speicher, D. W. & Rauscher, F. J., 3rd. (2000) Biochemical analysis of the Kruppel-associated box (KRAB) transcriptional repression domain, J Biol Chem. 275, 18000-10.
    40. Jakobsson, J., Cordero, M. I., Bisaz, R., Groner, A. C., Busskamp, V., Bensadoun, J. C., Cammas, F., Losson, R., Mansuy, I. M., Sandi, C. & Trono, D. (2008) KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress, Neuron. 60, 818-31.
    41. Tsuruma, R., Ohbayashi, N., Kamitani, S., Ikeda, O., Sato, N., Muromoto, R., Sekine, Y., Oritani, K. & Matsuda, T. (2008) Physical and functional interactions between STAT3 and KAP1, Oncogene. 27, 3054-9.
    42. O'Geen, H., Squazzo, S. L., Iyengar, S., Blahnik, K., Rinn, J. L., Chang, H. Y., Green, R. & Farnham, P. J. (2007) Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs, PLoS Genet. 3, e89.
    43. Okamoto, K., Kitabayashi, I. & Taya, Y. (2006) KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction, Biochem Biophys Res Commun. 351, 216-22.
    44. Thomas, J. H. & Emerson, R. O. (2009) Evolution of C2H2-zinc finger genes revisited, BMC Evol Biol. 9, 51.
    45. Do, C. B. & Katoh, K. (2008) Protein multiple sequence alignment, Methods Mol Biol. 484, 379-413.
    46. Martosella, J., Zolotarjova, N., Liu, H., Nicol, G. & Boyes, B. E. (2005) Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins, J Proteome Res. 4, 1522-37.

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE