簡易檢索 / 詳目顯示

研究生: 阿杜
Scholz, Artur
論文名稱: 奈米級衛星進階姿態判別與控制技術之實現
Implementation of Advanced Attitude Determination and Control Techniques into a Nanosatellite
指導教授: 苗君易
Miau, Jiun-Jih
林穎裕
Lin, Yiing-Yuh
莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 112
外文關鍵詞: magnetic stabilization, PACE, momentum-biased stabilization, attitude determination, Extended Kalman Filter, Nanosatellite
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動式姿態控制技術至今甚少被實現於奈米級或皮米級衛星。一般而言,被動式穩定控制技術之最大優點為其結構單純且易於使用。然而,為了提昇奈米級衛星之能力,以面對未來更複雜的任務,進階姿態控制技術之發展與測試是必要的。

    此論文主要目的在為PACE任務發展一穩定的姿態控制法則,以於此二 公斤的太空載具實現姿態控制實驗。PACE為國內第一顆自製、由國立成功大學研發的奈米級衛星。本論文將呈現動量偏移穩定與純磁力控制的控制法則、模擬與實現。PACE計畫相當獨特的即是使用單一動量飛輪做為奈米級衛星姿態控制元件,而此方法也從未在此論文發表前實現過。同時為了即時估計衛星姿態,本篇論文亦發展並模擬了擴展型卡爾曼濾波器。

    這些模擬展示了姿態判定過程的效能,並顯示在有擾動的情況下動量飛輪相較於被動式磁力矩控制所擁有的優勢。所有本論文發表的姿態控制模組具有新式、可得性高與微型化的特點,也使PACE衛星成為一個發展姿態控制實驗的理想平台。

    The implementation of active attitude control techniques is still barely exploited for nano- and picosatellites. Commonly, pure passive stabilization, if at all, is preferred due to its simplicity. But in order to enhance the capabilities of nanosatellites in the perspective of ever challenging mission objectives, advanced attitude control strategies need to be developed and tested.

    The primary purpose of this thesis is to develop a consistent attitude control strategy for the PACE mission, in order to carry out attitude control experiments on this 2 kg space-craft. PACE is the first indigenous nanosatellite developed at the National Cheng Kung Uni-versity (NCKU) in Taiwan. Control laws for pure magnetic actuation as well as for momen-tum-biased stabilization are presented, implemented and simulated. The use of a single mo-mentum wheel for attitude control of a nanosatellite is unique to the PACE mission and has not been carried out prior to this thesis. For the on-board estimation of the satellite’s attitude, an Extended Kalman Filter has been developed and simulated.

    The simulations access the performance of the attitude determination process and demonstrate the superiority of the momentum-biased stabilization over the pure magnetic stabilization in the presence of the disturbance forces. All the presented attitude modes take advantage of novel and/or commercially available, highly miniaturized devices that make the PACE nanosatellite truly an ideal platform for attitude control experiments.

    1 Introduction 1 1.1 Background 1 1.2 The PACE Nanosatellite 2 1.3 The PACE Attitude Hardware 4 1.4 Thesis Outline 7 2 Fundamentals of Attitude Control 8 2.1 Coordinate Systems 8 2.2 Equations of Motion 16 2.3 The Space Environment 19 3 Attitude Control of PACE 26 3.1 Attitude Control Strategy 26 3.2 PACE Attitude Dynamics 29 3.3 Detumbling 33 3.4 Attitude Determination 35 3.5 Magnetic Stabilization 45 3.6 Momentum-Biased Stabilization 52 3.7 Summary of Control Laws 55 4 Simulations 56 4.1 Simulation Parameters 56 4.2 The Uncontrolled Satellite 58 4.3 Detumbling 61 4.4 Attitude Determination 64 4.5 Magnetic Stabilization 69 4.6 Momentum-Biased Stabilization 76 5 Conclusions 82 5.1 Discussion of Results 82 5.2 Recommendation for Future Work 84 Bibliography 86 Appendix 91

    [1] S. Lee, et al. CubeSat Design Specification (Rev.10). California Polytechnic State University, San Luis Obispo, 2007.
    [2] J.C. Juang and J.J. Miau. Overview of the PACE Satellite: a Three-Axis Stabilized CubeSat. 1st International CubeSat Symposium, San Luis Obispo, 2003.
    [3] J.K. Tu, S.H. Wu, C.C. Chu. Platform for Attitude Control Experiment (PACE): An Experimental Three-Axis Stabilized CubeSat. 18th AIAA/USU Conference on Small Satellites, 2004.
    [4] Y.M. Suen, J.C. Juang. Design and Simulation of a Picosatellite Attitude Control Subsystem. Master Thesis, NCKU, Taiwan, 2003.
    [5] A. Scholz, J.J. Miau, J.C. Juang. Miniature Digital Sun Sensor for Application in Nano- and Picosatellites. CubeSat Developers Workshop, San Luis Obispo, 2008.
    [6] A. Scholz, J.J. Miau, J.C. Juang, C.C. Ker, B.C. Chen, H.L. Chiu, J.K. Tu. Develop-ment of Digital CMOS Sun Sensors at National Cheng Kung University. UNIVERSAT, Chung Li, Taiwan, 2007.
    [7] S.H. Wu, J.J. Miau, J.C. Juang. Attitude Determination and Control Subsystem. Mas-ter Thesis, NCKU, Taiwan, 2006.
    [8] M.J. Sidi. Spacecraft Dynamics and Control. Cambridge University Press, New York, 1997.
    [9] B. Wie. Space Vehicle Dynamics and Control. AIAA Education Series, Reston, Vir-gina, 1998.
    [10] V.A. Chobotov. Spacecraft Attitude Dynamics and Control. Krieger Publishing Com-pany, Florida, 1991.
    [11] A. C. Tribble. The Space Environment. Princeton University Press, New Jersey, 1995.
    [12] C.K. Chui and G. Chen. Kalman Filtering. Springer Verlag. Berlin, 1987
    [13] G. Welch and G. Bishop. An Introduction to the Kalman Filter. University of North Carolina at Chapel Hill, Department of Computer Science, Chapel Hill, 2001.
    [14] M. D. Shuster. The Generalized Wahba Problem. The Journal of the Astronautical Sciences, Vol. 54, No. 2, April–June 2006, pp. 245–259
    [15] F. L. Markley and D. Mortari. How to Estimate Attitude from Vector Observations. American Astronautical Society, Paper AAS 99-427, 1999.
    [16] D. Gebre-Egziabher et al. A Gyro-Free Quaternion-Based Attitude Determination System Suitable for Implementation Using Low Cost Sensors. IEEE Positioning, Lo-cation, and Navigation Symp. (PLANS), San Diego, 2000.
    [17] M. S. Grewal and A. P. Andrews. Kalman Filtering. John Wiley & Sons, New York, 2001.
    [18] A.H. Jazwinski. Stochastic Processes and Filtering Theory. Vol. 64 of Mathematics in Science and Engineering, Academic Press Inc., London, 1970.
    [19] M. J. Hale, P. Vergez and M. J. Meerman. Kalman Filtering and the Attitude Deter-mination and Control Task. AIAA-2004-6018, 2004.
    [20] P. Schlyter. How to compute planetary positions. http://www.stjarnhimlen.se/comp/ppcomp.html
    [21] International Geomagnetic Reference Field, URL: http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html, Revised: 22 March, 2005.
    [22] A.C. Stickler. An Elementary Magnetic Attitude Control System. Presented at the AIAA Mechanics and Control of Flight Conference, AIAA Paper No. 74-923, 1974.
    [23] J. Jung, N. Kuzuya, J. Alvarez. The Design of the OPAL Attitude Control System. Proceedings of the 10th Annual AIAA/USU Conference on Small Satellites, 1996.
    [24] K. Ogata. Discrete-Time Control Systems. Pearson Education Taiwan Ltd., Taiwan, 2006.
    [25] P. C. Hughes. Spacecraft Attitude Dynamics. John Wiley and Sons, New York, 1986.
    [26] R. Wisniewski, M. Blanke. Fully magnetic attitude control for spacecraft subject to gravity gradient. Automatica 35 7, pp. 1201–1214 , 1999.
    [27] M. Grassi. Attitude Determination and Control for a Small Remote Sensing Satellite. Acra Astronautica Vol. 40, No. 9, pp. 675-681, 1997.
    [28] Y.W. Jan, J.R. Tsai. Active control for initial attitude acquisition using magnetic torquers. Acta Astronautica 57, pp. 754 – 759, 2005.
    [29] S.M. Joshi, A.G. Kelkar, J.T.Y. Wen. Robust Attitude Stabilization of Spacecraft Us-ing Nonlinear Quaternion Feedback. IEEE Transactions on Automatic Control, Vol. 40, No. 10, 1995.
    [30] L.C.G. de Souza. Design of Satellite Control System Using Optimal Nonlinear Theory. Taylor & Francis Group LLC, London, 2006.
    [31] T. Bak, R. Wisniewski, M. Blanke. Autonomous Attitude Determination and Control System for the Ørsted Satellite. IEEE Aerospace Application Conference, Colorado, 1996.
    [32] J.S. White, F.H. Shigemoto, K. Bourquin. Satellite Attitude Control Utilizing the Earth’s Magnetic Field. Technical Report NASA TN-D1068, National Aeronautics and Space Administration, August 1961.
    [33] F. Martel, P.K. Pal, M. Psiaki. Active magnetic control system for gravity gradient stabilized spacecraft. Proceedings of the Second Annual AIAA/USU Conference on Small Satellites, 1988.
    [34] K.L. Musser, W.L. Ebert. Autonomous spacecraft attitude control using magnetic torquing only. Flight Mechanics/Estimation Theory Symposium, 1989.
    [35] W.H. Steyn. A Multi-mode Attitude Determination and Control System for Small Satellites. Ph.D. Thesis, University of Stellenbosch, Matieland, 1995.
    [36] R. Wisniewski. Satellite Attitude Control Using Only Electromagnetic Actuation. Ph.D. Thesis, Aalborg University, Aalborg, 1996.
    [37] J. Gießelmann. Development of an Active Magnetic Attitude Determination and Con-trol System for Picosatellites on highly inclined circular Low Earth Orbits. Master Thesis, RMIT University, Melbourne, 2006.
    [38] F. Renk. Attitude Control for a Micro-Satellite Using only Magnetic Coils and Target Pointing for Multiple Satellites. Graduate thesis, Australian Centre for Field Robotics, University of Sydney, 2005.
    [39] B.S. Gregory. Attitude Control System Design for ION, the Illinois Observing Nano-satellite. Master Thesis, University of Illinois, Urbana, 2004.
    [40] K.L. Makovec. A Nonlinear Magnetic Controller for Three-Axis Stability of Nanosa-tellites. Masther Thesis, Virginia Polytechnic Institute and State University, Blacks-burg, 2001.
    [41] T. Graversen, M.K. Frederiksen, S.V. Vedstesen. Attitude Control System for AAU CubeSat. Master Thesis, Aalborg University, Aalborg, 2002.
    [42] A.G.O. Mutambara. Design and Analysis of Control Systems. CRC Press LLC, Flor-ida, 1999.
    [43] R. Wisniewski. Linear Time Varying Approach to Satellite Attitude Control using only Electromagnetic Actuation. Journal of Guidance, Control, and Dynamics, 2000.
    [44] W.H. Steyn. Comparison of low-earth-orbit satellite attitude controllers submitted to controllability constraints. Journal of Guidance, Control, and Dynamics, 0731-5090 vol.17 no.4 (795-804), 1994.
    [45] Y.K. Chang, B.H. Let, S.J. Kim, S.J. Kang. HAUSAT-2 Nanosatellite ADCS Perform-ance Analysis and Commissioning. IEEE 0-7803-8977-8/05, 2005.
    [46] M.L. Psiaki. Magnetic Torquer Attitude Control via Asymptotic Periodic Linear Quadratic Regulation. Journal of Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001.
    [47] Y.K. Chang, B.H. Lee and S.J. Kim. Analysis of the HAUSAT-2 Attitude Control with a Pitch Bias Momentum Wheel. IAA-B5-1202, 5th IAA Symposium on Small Satel-lites for Earth Observation, Berlin, Germany, April 4-8, 2005.
    [48] P.M. Barba, J.N. Aubrun. Satellite Attitude Acquisition by Momentum Transfer. AIAA Journal, 1976.
    [49] S.K. Shrivastava, S. Roy. Attitude acquisition using momentum transfer and reactions jets. The Journal of the Aeronautic Society of India, Vol. 32, No. 1-4, 1980.
    [50] D. Tong. Spacecraft Momentum Dumping Using Gravity Gradient. Journal of Space-craft and Rockets, 1998.
    [51] R. J. McElvain. Satellite Angular Momentum Removal Utilizing the Earth’s Magnetic Field. Space Systems Division, Hughes Aircraft Co., El Segundo, 1962.
    [52] R. Wisniewski, P. Kulczycki. Slew Maneuver Control for Spacecraft Equipped with Star Camera and Reaction Wheels. Preprint submitted to Elsevier Science, 2003.

    下載圖示 校內:立即公開
    校外:2008-08-20公開
    QR CODE