| 研究生: |
陳孟佑 Chen, Meng-You |
|---|---|
| 論文名稱: |
深度學習於重力波資料分析之運用 Deep learning applied to data analysis of gravitational wave |
| 指導教授: |
游輝樟
Hwei-Jang, Yo, |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 機器學習 、重力波分析 、卷積類神經網路 、擬合匹配 |
| 外文關鍵詞: | Machine learning, Gravitational wave analysis, Convolution Neuron Network(CNN), Matched filtering |
| 相關次數: | 點閱:95 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文使用重力波解析波形加上不同形式的雜訊,仿造重力波干涉儀所偵測到的訊號,作為訓練卷積類神經網路的資料集,並產生足以在高雜訊資料中辨識重力波訊號的判別模型。目前,重力波觀測主要使用匹配濾波器來分析干涉儀的觀測時序資料,而我們是採用機器學習的方法,使用不同的結構及超參數建構並訓練卷積類神經網路,以判斷觀測資料中是否包含重力波樣板,並針對淺層及深層的類神經網路進行探討。此概念是啟發自George 及Huerta的論文。
在第二章中,我們對機器學習做一個初步的介紹。第三章利用了Sin-
Gaussian函數加上雜訊的一個簡單模型,演示LIGO如何利用白化及匹配濾波器偵測重力波訊號。接著,我們說明此研究所使用的卷積類神經網路結構以及訓練資料製備策略。第四章展示了研究的成果:我們發現,相較於高斯雜訊,以白化雜訊製備出的資料集所訓練出的機器學習模型,對於不同訊雜比的測試資料有較平滑的敏感度表現。另外,針對層數上的比較,四層卷積層加上兩層全連接層的結構相較於其他結構表現來的好。最後,我們隨機偏移了訓練資料集中的重力波波峰,研究對於訓練模型的影響。我們發現,該模型對不同訊雜比測試資料的判別敏感度曲線明顯變差了,我們預期需要更細緻的超參數調教,或是較長的訓練步數。最後,第五章總結了本研究,並提出一些類神經網路可以進行改善的方法。
This article uses analytical gravitational waveforms superposed with di erent types of noise to simulate the LIGO detection data. The LIGO uses the matched filtering technique to detect gravitational waves in a laser interferometer. Here, we use the machine learning method to decide whether there is a gravitational wave signal in a simulated waveform. Inspired by George and Huerta's paper, we use di erent convolution neuron network (CNN) architectures and hyperparameters to t our detector's data and study the behaviors for both shallow and deep neuron networks.
In chapter 2, we introduce the CNN and some terminologies in machine learning.In chapter 3, we use a noisy sin-Gaussian function as a toy model to demonstrate the
standard LIGO approach of whitening and matched ltering for detecting signals. Then we introduce the neuron network architecture and the initial data preparation in our machine learning scheme.
In chapter 4, we demonstrate our result. We found our model shows a smoother sensitivity-versus-signal-to-noise-ratio curve for testing data with white noise than those
with Gaussian noise. Our neuron network architecture consisted of four convolution layers and two fully connected layers yield much better results compared to other architectures. Then, we vary the dataset with randomly shifted waveform peaks to mimic
real detection scenario, the behavior becomes worse and needs further study.
In chapter 5, we summarize results and propose some improvements to our neuron network.
[1] Yi Pan Tanja Hinderer Michael Boyle Daniel A. Hemberger Lawrence E. Kidder Geoffrey Lovelace Abdul H. Mroue Harald P. Pfeiffer Mark A. Scheel Bela Sziagyi
Nicholas W. Taylor Andrea Taracchini, Alessandra Buonanno and Anil Zenginoglu.Effective-one-body model for black hole binaries with generic mass ratios and spins.Physicals Review D, 89(6):061502, 2014.
[2] Jeff.K. Beckett and John C. Bancroft. Introduction to match lters. Crews Research,Report, 14:1-8, 2002.
[3] Jonathan Masci Jurgen Schmidhuber Dan Cire san, Ueli Meier. Multi-column deep neural network for traffic sign classi cation. Neural Network, 32:333-338, 2012.
[4] Geoffrey E. Hinton Ronald J. Williams David E.Rumelhart. Learning representation by back-propagating errors. Nature, 323(9):533-536, 1986.
[5] Trevor Hastie Gareth James, Daniela Witten and Robert Tibshirani. An introduction to statistical learning with applications in R. Springer, New York,USA,p.176,2013.
[6] Daniel George and E. A. Huerta. Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced ligo data. Physics Letters B, 778:64-70, 2018.
[7] Daniel George and E. A. Huerta. Deep neural networks to enable real-time multimessenger astrophysics. Physicals Review D, 97(4):044039, 2018.
[8] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Springe, New York,USA,p.67, 2018.
[9] Tom M.Mitchell. Machine Learning. McGraw-Hill, New York, USA,p.2, 1997.
[10] Ye Yuan Ding Liu Zehua Huang Xiaodi Hou Garrison Cottrell Panqu Wang and Pengfei Chen. Understanding convolution for semantic segmentation.
2017,arXiv:/1702.08502v3cond-mat.
[11] Jie Li Zhen Yang Qiang Zhang, Qiangqiang Yuan and Xiaoshuang Ma. Learning a dilated residual network for sar image despeckling. Remote Sensing, 10(2):196-214,2018.
[12] Stuart Russell and Peter Norvig. Arti cial Intelligence: A Modern Approach. Pearson Higher Education Professional Group, New York, USA,p.709, 2009.
[13] LIGO scienti c and VIRGO collaborations. The basic physics of the binary black hole merger gw150914. Annalen der physik, 529(2):1600209, 2016.
[14] Zenghui Wang Waseem Rawat. Deep convolutional neural networks for image classi cation: a comprehensive review. Communicated by Vincent Vanhoucke,29:2352-2449, 2017.
[15] Antoine Bordes Yoshua Bengio Xavier Glorot. Deep sparse recti er neural networks.Proceedings of Machine Learning Research, 15:315-323, 2011