| 研究生: |
陳韋甫 Chen, Wei-Fu |
|---|---|
| 論文名稱: |
以側接寡聚乙烯亞胺之聚丙烯胺擬樹枝狀高分子製備金屬奈米粒子 |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 擬樹枝狀高分子 、聚丙烯胺 、錯合物 、穩定劑 、金屬奈米粒子 、非等向性粒子 |
| 外文關鍵詞: | stabilizer, complex, metal nanoparticle, anisotropic particle, poly(allylamine), pseudo-dendritic polymer |
| 相關次數: | 點閱:130 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以不同側鏈乙烯亞胺基數之聚丙烯胺高分子PAA、PAA(EI)2與PAA(EI)5.8作為穩定劑,以金屬鹽化學還原法合成銅與銀之奈米粒子。本研究探討銅(II)離子錯合物之UV-vis吸收光譜,並且發現PAA(EI)2與PAA(EI)5.8配位場強度明顯高於PAA。經高分子錯合之銅(II)離子在還原後乃形成穩定且分散良好的銅奈米粒子。穩定的銀奈米粒子也以相同程序製備,高分子立體結構在粒徑、粒徑分佈與聚集行為之效應乃藉著UV-vis吸收光譜與TEM影像的分析加以探討,數據顯示PAA(EI)n在防止銀粒子聚集上比PAA有較佳的穩定效果。在不同的銀離子濃度下,經高分子穩定之奈米粒子具有不同的型態及利徑分佈,據此,本研究提出一個取決於結構的穩定機制來加以解釋之。
以弱還原劑DMF探討銀粒子成長的研究中,UV-vis吸收光譜可以容易的觀察反應溫度、環境之pH值等因素之動態變化,TEM影像則提供粒子形狀與分佈型態分析。結果發現,銀粒子420 nm特徵吸收峰有藍位移再紅位移之趨勢,而粒子的非等向性成長需要還原量達一定值後才會明顯,故不同的反應時間適合的溫度也不同,pH較低時亦有利於非球型粒子產生,長時間的反應可以得到附著在高分子聚集體表面的銀粒子。金屬奈米粒子的分佈型態可藉著改變反應條件而受到控制。
The syntheses of copper and silver nanoparticles stabilized by poly(allylamine) (PAA) and by polyethyleneiminated poly(allylamine) (PAA(EI)n (n=2, 5.8)) were reported. The coordination of Cu(II) complexes were studied, and the results revealed a difference in the ligand field formation between PAA and PAA(EI)n. Reduction of polymeric ligands-chelated Cu(II) ions resulted in the formation of stable, water -soluble nanoparticles.
Colloidal silver nanoparticles were also prepared by the same procedure. The architectural effects in particle on the nanoparticle size, size distribution and agglomeration behavior were determined from the UV-vis plasmon absorption band and transmission electron microscopic (TEM) analyses. The data showed that PAA(EI)n display better stabilizing effects than PAA to prevent silver particles from agglomeration. Different phenomena of the polymer-protected nanoparticles at various silver ion concentrations were observed and were explained in terms of a mechanism of structure-dependent stabilization.
In the experiments of DMF system, UV-vis spectroscopy was used to monitor the growth of silver nanoparticles, and the kinetic analyses were performed to study the influences of reaction temperature and pH values. TEM images provided the observations in particle shape and distribution. The characteristic blue shift of surface plasmon peak at 420 nm owing to that the particle sizes are smaller than the magic number was observed. Furthermore, at various reaction times, anisotropic nanoparticles were formed at a suitable temperature. More acidic environment are also favorable for the growth of nonsphere-shaped silver nanoparticles. By altering the [N]/[Mn+] ratio, the morphology and distribution of nanoparticles within polymer matrix could be well controlled.
1. 馬遠榮,奈米科技,商周出版,2002。
2. Lee, L.; Seddon, G.; Stephens, F. Stained Glass, Crown, New York, 1976.
3. Jose-Yacaman, M.; Rendon, L.; Arenas, J. MCS Puche. Science 1996, 273, 223.
4. Phaidon, F. M. Guide to Glass, Prentice-Hall, Englewood Cliffs, 1983.
5. Turner, P. History of Photography, Exeter, New York, 1987.
6. Willimas, L. P. The Selected Correpondence of Michael Faraday, Cambridge University Press, 1971, Vol. 2.
7. Asano, S.; Sato, M. Appli. Optics, 1980, 19, 962.
8. Handly, D. A. Colloidal Gold, Academic Press, San Diego, 1989.
9. Hayat, M. A. Colloid Gold: Principles, Methods, and Applications, Academic Press, San Diego, 1989, Vol. 1.
10. Gabe, D. R. Principles of Metal Surface Treament and Protection, 2nd ed., Pergamon, Oxford, 1978.
11. Goad, D. G. W.; Moskovits, M. J. Appl. Phys. 1978, 49, 2929.
12. Andersson, A.; Hunderi, O.; Granqvist, C. G. J. Appl. Phys. 1980, 51, 754.
13. Henglein, A. Chem. Rev. 1989, 89, 1861.
14. Schmid, G. Chem. Rev. 1992, 92, 1709.
15. Mulvaney, P. Electrochemistry in Colloids and Dispersions, VCH, New York, 1992.
16. Ung, T.; Giersig, M.; Dunstan, D.; Mulvaney, P. Langmuir 1997, 13, 1773.
17. Keily, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. Nature 1998, 396, 444.
18. Pileni, M. P. Langmuir 1997, 13, 3266.
19. El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.
20. Flytzanis, C. etc. Nonlinear Optics in Composite Materials, Progress in Optics, North-Holland, Amsterdam, 1991, Vol. 29.
21. Jensen, T. R.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 1999, 103, 2934.
22. van der Zande, B. M. I.; Koper, G. J. M.; Lekkerkerker, H. N. W. J. Phys. Chem. B 1999, 103, 5754.
23. Al-Rawashdeh, N. A. F.; Sandrock, M. L.; Seugline, C. J.; Foss, C. A. J. Phys. Chem. B 1998, 102, 361.
24. Kreibig, U.; Vollmer, M. Optical Properties of Small Metal Clusters, Springer, Berlin, 1995.
25. Coen, R. W.; Cody, G. D.; Coutts, M. D.; Abeles, B. Phys. Rev. B 1973, 15, 3689.
26. Chen, S.; Murray, R. W.; Feldberg, S. W. J. Phys. Chem. B 1998, 102, 9898.
27. Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1999, 99, 7036.
28. Siegel, R. W.; Hu, E.; Roco, M. C. WTEC Panel Report on: Nanostructure Scince and Technology, Kluwer Academic Pubs., 1998.
29. Graffet, E.; Tchikart, M.; El Kedim, O.; Rahouadj, R. Mater. Charact. 1996, 36, 185.
30. Amulyavichus, A.; Daugvila, A.; Davidonis, R.; Sipavichus, C. Fiz. Met. Metalloved. 1998, 85, 111.
31. Balckborrow, J. R.; Young, D. Metal Vapor Synthesis, Springer Verlag, New York, 1979.
32. Turkevich, J.; Kim, G. Science 1970, 169, 873.
33. Leisner, T.; Rosche, C.; Wolf, S.; Granzer, F.; Wöste, L. Surf. Rev. Lett. 1996, 3, 1105.
34. Michaelis, M.; Henglein, A. J. Phys. Chem. 1992, 96, 4719.
35. Watzky, M. A.; Finkle, R. G. J. Am. Chem. Soc. 1997, 119, 10382.
36. Rothe, J.; Hormes, J.; Bönnemann, H.; Brijoux, W.; Siepen, K. J. Am. Chem. Soc. 1998, 120, 6019.
37. Goia, D. V.; Matijevic, E. New J. Chem. 1998, 1203.
38. Schmid, G. Polyhedron 1988, 7, 2321.
39. Schmid, G.; Lehnert, A. Angew. Chem. Int. Ed. Engl. 1989, 28, 780.
40. Schmid, G.; Peschel, S. New J. Chem. 1998, 22, 669.
41. (a) Hirai, H.; Nakao, Y. Toshima, N.; Adachi, K. Chem. Lett. 1976, 905. (b) Hirai, H.; Nakao, Y. Toshima, N. Chem. Lett. 1978, 545. (c) Hirai, H.; Nakao, Y. Toshima, N. J. Marcromol. Sci. Chem. 1978, A12, 1117. (d) Hirai, H.; Nakao, Y. Toshima, N. J. Marcromol. Sci. Chem. 1979, A13, 727.
42. Zeng, D.; Hampden-Smith M. J. Chem Mater. 1993, 5, 681.
43. (a) Schlesinger, H. I.; Brown, H. C.; Finholt, A. E.; Gilbreath, J. R.; Hockstrue, H. R.; Hyde, E. K. J. Am. Chem Soc. 1953, 75, 215. (b) Brown, H. C.; Brown, C. A. J. Am. Chem Soc. 1962, 84, 1493.
44. (a) Glavee, G. N.; Klabunda, K. J.; Sorensen, C. M.; Hadjapanayis, G. C. Langmuir 1992, 8, 771. (b) Glavee, G. N.; Klabunda, K. J.; Sorensen, C. M.; Hadjapanayis, G. C. Inorg. Chem. 1993, 32, 474.
45. Yu, J. Y.; Schreiner, S.; Vaska, L. Inorg. Chim. Acta 1990, 170, 145.
46. Hugar, G. H.; Nandibewoor, S. T. Ind. J. Chem. 1993, 32A, 1056.
47. (a) Pastoriza-Santos, I.; Liz-Marzan, L. M. Nanoletters 2002, 2, 903. (b) Pastoriza-Santos, I.; Liz-Marzan, L. M. Langmuir 2002, 18, 2888.
48. Pastoriza-Santos, I.; Liz-Marzan, L. M. Langmuir 1999, 15, 948.
49. (a) Mulvaney, P. Langmuir 1996, 12, 788. (b) Johnson, P. B.; Christy, R. W. Phys. Rev. B Condens. Matter 1972, 6, 4370.
50. Turkevich, J. Gold Bull 1985, 18, 86.
51. (a) Mulvaney, P.; Henglein, A. J. Phys. Chem. 1990, 94, 4182. (b) Ershov, B. G.; Janata, E.; Henglein, A.; Fojtik, A. J. Phys. Chem. 1993, 97, 4589. (c) Ershov, B. G.; Henglein, A. J. Phys. Chem. B 1998, 102, 10667.
52. Kuo, P. L.; Ghosh, S. K.; Liang, W. J.; Hsieh, Y. T. J. Poly. Sci. part-A. 2001, 39, 17, 3018.
53. Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem, Res. 2001, 34, 3, 181.
54. Zhao, M.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc 1998, 120, 4877.
55. Belford, R. L.; Calvin, M.; Belford, G. J. Chem. Phys. 1957, 26,1165.
56. Lisiecki, I.; Pileni, M. P. J. Am. Chem. Soc. 1993, 115, 3887.
57. Yanase, A.; Komiyama, H. Sur. Sci. 1991, 248, 11.
58. Yeh, M. S.; Yang, Y. S.; Lee, Y. P.; Lee, H. F.; Yeh, Y. H.; Yeh, C. S. J. Phys. Chem. B 1999, 103, 6851.
59. Ottaviani, M. F.; Valluzzi, R.; Balogh, L. Macromolecules 2002, 35, 5105.
60. Henglein, A. Giersig, M. J. Phys. Chem. B 1999, 103, 9533.
61. Petit, C.; Lixon, P.; Pileni, M. P. J. Phys. Chem. 1993, 97, 12974.
62. Zheng, J.; Stevenson, M. S.; Hikida, R. S.; P. Gregory Van Patten J. Phys. Chem. B 2002, 106, 1252.
63. Mayer, A. B. R.; Mark, J. E. Polymer 2000, 41, 1627.
64. (a) Mostafavi, M.; Delcourt, M. O.; Keghouche, N.; Picq, G. Radiat. Phys. Chem. 1992, 40, 445. (b) Mostafavi, M.; Delcourt, M. O.; Picq, G. Radiat. Phys. Chem. 1993, 41, 453.
65. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.
66. Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Langmuir 2002, 18, 922.
67. Henglein, A. J. Phys. Chem. 1993, 97, 5457.
68. Henglein, A. J. Phys. Chem. 1979, 83, 2209.
69. Yanagihara, N.; Tanaka, Y.; Okamoto, H. Chem. Lett. 2001, 796.