| 研究生: |
張以恆 Chang, I-Heng |
|---|---|
| 論文名稱: |
雙特異性去磷酸酶-2及血管內皮生長因子-C調控胰臟癌擴散之機制探討 Regulation of Pancreatic Cancer Dissemination by Dual Specificity Phosphatase-2 / VEGF-C Signaling |
| 指導教授: |
蔡少正
Tsai, Shaw-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 血管內皮生長因子-C 、雙特異性去磷酸酶-2 、淋巴管新生 、自體分泌 、胰導管腺癌 |
| 外文關鍵詞: | VEGF-C, DUSP2, lymphangiogenesis, autocrine, PDAC |
| 相關次數: | 點閱:165 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胰導管腺癌目前仍是最惡性的癌症之一,其五年內存活率僅不到5%。大部分病人在初次被診斷出患有胰導管腺癌時,已伴隨著癌細胞的擴散,可能是造成如此低存活率之原因。淋巴管是最常見的實質腫瘤轉移路徑,因此,淋巴管新生促進因子表達的增加,在胰導管腺癌中可能扮演著重要的角色。我們先前研究發現一個重要的抑癌基因,雙特異性去磷酸酶-2,其表達在許多癌症中都大幅地降低甚至不表現,而此低表現導致許多癌症惡性徵狀。因此,我們亟欲探討雙特異性去磷酸酶-2表達下降在高度轉移性的胰導管腺癌中引起之病理後果並瞭解其下游調控機制。利用基因微陣列分析,發現一主要淋巴管新生促進因子,血管內皮生長因子-C,其表達可能受雙特異性去磷酸酶-2負調控。我們假設雙特異性去磷酸酶-2表達下降導致血管內皮生長因子-C之表現提升,進而促進胰導管腺癌細胞爬行與癌症轉移能力。利用表達載體轉染胰導管腺癌細胞株我們證實了雙特異性去磷酸酶-2對於血管內皮生長因子-C之負調控。作為生長因子,血管內皮生長因子-C必須分泌至細胞外並修飾成為有功能之蛋白質。我們發現雙特異性去磷酸酶-2不僅促進血管內皮生長因子-C之轉錄,並對其獲取功能的後轉譯修飾有所影響。為探討雙特異性去磷酸酶-2負調控之血管內皮生長因子-C功能,我們利用富含血管內皮生長因子-C的雙特異性去磷酸酶-2抑制表達胰導管腺癌細胞之培養基,探討其中之血管內皮生長因子-C是否能促進淋巴新生,結果顯示其培養基確實促進淋巴內皮細胞之生長與爬行。在免疫缺陷小鼠之異種移植腫瘤細胞模式中,進一步證明抑制雙特異性去磷酸酶-2之胰導管腺癌細胞所形成之腫瘤有較高程度的淋巴管新生。血管內皮生長因子-C除了對淋巴管新生之旁分泌功能外,也能透過自體分泌而促進胰導管腺癌細胞之侵略性。抑制雙特異性去磷酸酶-2之胰導管腺癌細胞表現了較高的穿透移行侵襲能力,此現象在抑制血管內皮生長因子-C訊息路徑後隨之降低。抑制血管內皮生長因子-C之胰導管腺癌細胞也顯示較低之移行能力。我們的研究指出,在胰導管腺癌之進程中,雙特異性去磷酸酶-2之表現降低導致血管內皮生長因子-C的高度表達,此功能性血管內皮生長因子-C能夠利用旁分泌促進淋巴管新生,並且經由自體分泌使癌細胞更具侵略性而促使胰導管腺癌惡化。我們相信,以血管內皮生長因子-C作為標的或同時重建雙特異性去磷酸酶-2之表現,將可能作為一個具有潛力的治療方針,以抑制胰導管腺癌之進展。另外,抑制血管內皮生長因子-C被轉譯後修飾成功能性蛋白質之酵素路徑,可能為另一種有前景的方式來抑制胰導管腺癌之擴散與惡化。
Pancreatic ductal adenocarcinoma (PDAC) remains as one of the most malignant cancers with less than 5% 5-year survival rate. The low survival rate is due, at least in part, to late diagnosis since most PDAC patients were first diagnosed after the tumor has disseminated. Lymphatic vessels are the most common route for solid tumor cells to spread, therefore, the increased expression of lymphangiogenic growth factors may play a critical role in PDAC metastasis. Our previous study found dual specificity phosphatase 2 (DUSP2), a critical tumor suppressor gene in controlling multiple cancer malignancy, is markedly decreased in many cancers. We herein further investigate the pathological consequence of DUSP2 downregulation in PDAC metastasis. To dissect the underlying mechanism, we performed microarray analysis and the data indicated one critical lymphangiogenic factor, vascular endothelial growth factor C (VEGF-C), is negatively regulated by DUSP2. We hypothesized that downregulation of DUSP2 in PDAC cells promotes tumor cell migration and metastasis by up‐regulation of VEGF‐C. Knockdown of DUSP2 increased VEGF-C expression while overexpression of DUSP2 decreased VEGF-C in PDAC cells. As a growth factor, VEGF-C has to be cleaved and secreted to extracellular space to be functional. We demonstrated that loss-of-DUSP2 not only stimulates VEGF-C transcription but also regulates VEGF-C cleavage at the post-translational level as evidenced by that loss-of-DUSP2-enhanced VEGF-C secretion was diminished by addition of proprotein convertase inhibitor. To test whether loss-of-DUSP-induced VEGF-C promotes lymphangiogenesis, conditioned media from DUSP2 knockdown cells were used to treat lymphatic endothelial cells (LECs). As expected, the conditioned media with elevated expression of VEGF-C promoted migration and growth of LECs, and in vivo animal study also demonstrated that DUSP2 knockdown tumors developed more lymphatic vessels, strongly suggesting that inhibition of DUSP2 promotes lymphangiogenesis via up-regulation of VEGF-C. In addition to the paracrine effect on LECs, we found that VEGF-C promotes cancer cells migration via an autocrine mechanism. Knockdown of VEGF-C in PDAC cells significantly decreased cell invasion whilst enhanced invasion ability by DUSP2 knockdown can be abolished by treatment with VEGFR2/VEGFR3 inhibitor, lenvatinib. Thus, loss-of-DUSP2-mediated VEGF-C upregulation can induce lymphatic vessel infiltration to the cancer tissue and, at the same time, increase pancreatic cancer cell migration to promote cancer cell dissemination. Taken all together, our results indicate that downregulation of DUSP2 during pancreatic cancer progression may lead to increased VEGF-C expression, which promotes cancer malignancy via paracrine (lymphangiogenesis) and autocrine (tumor cell migration) mechanisms. Our findings suggest that targeting VEGF-C or restoration of DUSP2 simultaneously may serve as an attractive therapeutic approach to inhibit pancreatic cancer progression. Alternatively, inhibiting VEGF-C from being processed by convertase might be another promising approach to inhibit PDAC dissemination and cancer malignancy.
1. Feig, C., Gopinathan, A., Neesse, A., Chan, D. S., Cook, N., and Tuveson, D. A. (2012) The Pancreas Cancer Microenvironment. Clinical Cancer Research 18, 4266-4276
2. Hidalgo, M., Cascinu, S., Kleeff, J., Labianca, R., Löhr, J. M., Neoptolemos, J., Real, F. X., Van Laethem, J.-L., and Heinemann, V. (2015) Addressing the challenges of pancreatic cancer: Future directions for improving outcomes. Pancreatology 15, 8-18
3. McKenna, L. R., and Edil, B. H. (2014) Update on pancreatic neuroendocrine tumors. Gland Surgery 3, 258-275
4. Artinyan, A., Soriano, P. A., Prendergast, C., Low, T., Ellenhorn, J. D. I., and Kim, J. (2008) The anatomic location of pancreatic cancer is a prognostic factor for survival. HPB : The Official Journal of the International Hepato Pancreato Biliary Association 10, 371-376
5. Haqq, J., Howells, L. M., Garcea, G., Metcalfe, M. S., Steward, W. P., and Dennison, A. R. (2014) Pancreatic stellate cells and pancreas cancer: Current perspectives and future strategies. European Journal of Cancer 50, 2570-2582
6. Ahrendt, S. A., and Pitt, H. A. (2002) Surgical management of pancreatic cancer. Oncology 16, 725-734; discussion 734, 736-728, 740, 743
7. Yadav, D., and Lowenfels, A. B. (2013) The Epidemiology of Pancreatitis and Pancreatic Cancer. Gastroenterology 144, 1252-1261
8. Ryan, D. P., Hong, T. S., and Bardeesy, N. (2014) Pancreatic Adenocarcinoma. New England Journal of Medicine 371, 1039-1049
9. Hidalgo, M. (2010) Pancreatic Cancer. New England Journal of Medicine 362, 1605-1617
10. Ni, X., Long, J., Cen, P., Chen, L., Yang, J., and Li, M. (2012) Pancreatic cancer tumour initiating cells: the molecular regulation and therapeutic values. Journal of Cellular and Molecular Medicine 16, 988-994
11. Tuveson, D. A., and Neoptolemos, J. P. (2012) Understanding metastasis in pancreatic cancer: a call for new clinical approaches. Cell 148, 21-23
12. Rhim, Andrew D., Mirek, Emily T., Aiello, Nicole M., Maitra, A., Bailey, Jennifer M., McAllister, F., Reichert, M., Beatty, Gregory L., Rustgi, Anil K., Vonderheide, Robert H., Leach, Steven D., and Stanger, Ben Z. (2012) EMT and Dissemination Precede Pancreatic Tumor Formation. Cell 148, 349-361
13. Haeno, H., Gonen, M., Davis, M. B., Herman, J. M., Iacobuzio-Donahue, C. A., and Michor, F. (2012) Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell 148, 362-375
14. Rios, P., Nunes-Xavier, C. E., Tabernero, L., Kohn, M., and Pulido, R. (2014) Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxidants & redox signaling 20, 2251-2273
15. Zhang, Q., Muller, M., Chen, C. H., Zeng, L., Farooq, A., and Zhou, M. M. (2005) New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding. Journal of molecular biology 354, 777-788
16. Rohan, P. J., Davis, P., Moskaluk, C. A., Kearns, M., Krutzsch, H., Siebenlist, U., and Kelly, K. (1993) PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science 259, 1763-1766
17. Kim, E. K., and Choi, E.-J. (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1802, 396-405
18. Wu, J., Jin, Y. J., Calaf, G. M., Huang, W. L., and Yin, Y. (2007) PAC1 is a direct transcription target of E2F-1 in apoptotic signaling. Oncogene 26, 6526-6535
19. Yin, Y., Liu, Y.-X., Jin, Y. J., Hall, E. J., and Barrett, J. C. (2003) PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature 422, 527-531
20. Lin, S.-C., Chien, C.-W., Lee, J.-C., Yeh, Y.-C., Hsu, K.-F., Lai, Y.-Y., Lin, S.-C., and Tsai, S.-J. (2011) Suppression of dual-specificity phosphatase–2 by hypoxia increases chemoresistance and malignancy in human cancer cells. The Journal of Clinical Investigation 121, 1905-1916
21. Haag, T., Richter, A. M., Schneider, M. B., Jimenez, A. P., and Dammann, R. H. (2016) The dual specificity phosphatase 2 gene is hypermethylated in human cancer and regulated by epigenetic mechanisms. BMC Cancer 16, 49
22. Stacker, S. A., Williams, S. P., Karnezis, T., Shayan, R., Fox, S. B., and Achen, M. G. (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14, 159-172
23. Kim, H., Kataru, R. P., and Koh, G. Y. (2014) Inflammation-associated lymphangiogenesis: a double-edged sword? The Journal of Clinical Investigation 124, 936-942
24. Alitalo, K., Tammela, T., and Petrova, T. V. (2005) Lymphangiogenesis in development and human disease. Nature 438, 946-953
25. Alitalo, K., and Carmeliet, P. (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1, 219-227
26. Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Kalkkinen, N., and Alitalo, K. (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. The EMBO Journal 15, 290-298
27. Dallas, N., Fan, F., Gray, M., Van Buren, G., II, Lim, S., Xia, L., and Ellis, L. (2007) Functional significance of vascular endothelial growth factor receptors on gastrointestinal cancer cells. Cancer Metastasis Rev 26, 433-441
28. Kukk, E., Lymboussaki, A., Taira, S., Kaipainen, A., Jeltsch, M., Joukov, V., and Alitalo, K. (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122, 3829-3837
29. Kaipainen, A., Korhonen, J., Mustonen, T., van Hinsbergh, V. W., Fang, G. H., Dumont, D., Breitman, M., and Alitalo, K. (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A 92, 3566-3570
30. Karkkainen, M. J., Haiko, P., Sainio, K., Partanen, J., Taipale, J., Petrova, T. V., Jeltsch, M., Jackson, D. G., Talikka, M., Rauvala, H., Betsholtz, C., and Alitalo, K. (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5, 74-80
31. Baldwin, M. E., Halford, M. M., Roufail, S., Williams, R. A., Hibbs, M. L., Grail, D., Kubo, H., Stacker, S. A., and Achen, M. G. (2005) Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 25, 2441-2449
32. Skobe, M., Hawighorst, T., Jackson, D. G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., and Detmar, M. (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7, 192-198
33. Joukov, V., Sorsa, T., Kumar, V., Jeltsch, M., Claesson-Welsh, L., Cao, Y., Saksela, O., Kalkkinen, N., and Alitalo, K. (1997) Proteolytic processing regulates receptor specificity and activity of VEGF-C. The EMBO Journal 16, 3898-3911
34. Su, J.-L., Yang, P.-C., Shih, J.-Y., Yang, C.-Y., Wei, L.-H., Hsieh, C.-Y., Chou, C.-H., Jeng, Y.-M., Wang, M.-Y., Chang, K.-J., Hung, M.-C., and Kuo, M.-L. (2006) The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 9, 209-223
35. Fukahi, K., Fukasawa, M., Neufeld, G., Itakura, J., and Korc, M. (2004) Aberrant Expression of Neuropilin-1 and -2 in Human Pancreatic Cancer Cells. Clinical Cancer Research 10, 581-590
36. Büchler, P., Reber, H. A., Büchler, M. W., Friess, H., and Hines, O. J. (2002) VEGF-RII Influences the Prognosis of Pancreatic Cancer. Annals of Surgery 236, 738-749
37. von Marschall, Z., Cramer, T., Hocker, M., Burde, R., Plath, T., Schirner, M., Heidenreich, R., Breier, G., Riecken, E. O., Wiedenmann, B., and Rosewicz, S. (2000) De novo expression of vascular endothelial growth factor in human pancreatic cancer: evidence for an autocrine mitogenic loop. Gastroenterology 119, 1358-1372
38. Decio, A., Taraboletti, G., Patton, V., Alzani, R., Perego, P., Fruscio, R., Jürgensmeier, J. M., Giavazzi, R., and Belotti, D. (2014) Vascular Endothelial Growth Factor C Promotes Ovarian Carcinoma Progression through Paracrine and Autocrine Mechanisms. The American Journal of Pathology 184, 1050-1061
39. Staton, C. A., Koay, I., Wu, J. M., Hoh, L., Reed, M. W. R., and Brown, N. J. (2013) Neuropilin-1 and neuropilin-2 expression in the adenoma–carcinoma sequence of colorectal cancer. Histopathology 62, 908-915
40. Wang, C.-A., Harrell, J., Iwanaga, R., Jedlicka, P., and Ford, H. (2014) Vascular endothelial growth factor C promotes breast cancer progression via a novel antioxidant mechanism that involves regulation of superoxide dismutase 3. Breast Cancer Research 16, 462
41. Varney, M. L., and Singh, R. K. (2015) VEGF-C-VEGFR3/Flt4 axis regulates mammary tumor growth and metastasis in an autocrine manner. American Journal of Cancer Research 5, 616-628
42. Su, C. M., Su, Y. H., Chiu, C. F., Chang, Y. W., Hong, C. C., Yu, Y. H., Ho, Y. S., Wu, C. H., Yen, C. S., and Su, J. L. (2014) Vascular Endothelial Growth Factor-C Upregulates Cortactin and Promotes Metastasis of Esophageal Squamous Cell Carcinoma. Annals of surgical oncology
43. Chen, Y., Jiang, L., She, F., Tang, N., Wang, X., Li, X., Han, S., and Zhu, J. (2010) Vascular endothelial growth factor-C promotes the growth and invasion of gallbladder cancer via an autocrine mechanism. Mol Cell Biochem 345, 77-89
44. Jun Cho, H., Kim, I.-K., Park, S.-M., Eun Baek, K., Nam, I.-K., Park, S.-H., Ryu, K.-J., Choi, J., Ryu, J., Hong, S.-C., Jeong, S.-H., Lee, Y.-J., Ko, G.-H., Won Kim, J., Won Lee, C., Soo Kang, S., and Yoo, J. (2014) VEGF-C mediates RhoGDI2-induced gastric cancer cell metastasis and cisplatin resistance. International Journal of Cancer 135, 1553-1563
45. Khromova, N., Kopnin, P., Rybko, V., and Kopnin, B. P. (2012) Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Oncogene 31, 1389-1397
46. Hirata, H., Hinoda, Y., Ueno, K., Shahryari, V., Tabatabai, Z. L., and Dahiya, R. (2012) MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis 33, 41-48
47. Ye, J., Wu, X., Wu, D., Wu, P., Ni, C., Zhang, Z., Chen, Z., Qiu, F., Xu, J., and Huang, J. (2013) miRNA-27b Targets Vascular Endothelial Growth Factor C to Inhibit Tumor Progression and Angiogenesis in Colorectal Cancer. PloS one 8, e60687
48. Hu, J., Cheng, Y., Li, Y., Jin, Z., Pan, Y., Liu, G., Fu, S., Zhang, Y., Feng, K., and Feng, Y. (2014) microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer 50, 2336-2350
49. Morfoisse, F., Kuchnio, A., Frainay, C., Gomez-Brouchet, A., Delisle, M.-B., Marzi, S., Helfer, A.-C., Hantelys, F., Pujol, F., Guillermet-Guibert, J., Bousquet, C., Dewerchin, M., Pyronnet, S., Prats, A.-C., Carmeliet, P., and Garmy-Susini, B. (2014) Hypoxia Induces VEGF-C Expression in Metastatic Tumor Cells via a HIF-1α-Independent Translation-Mediated Mechanism. Cell Reports 6, 155-167
50. Siegfried, G., Basak, A., Cromlish, J. A., Benjannet, S., Marcinkiewicz, J., Chr, xE, tien, M., Seidah, N. G., and Khatib, A.-M. (2003) The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. The Journal of Clinical Investigation 111, 1723-1732
51. Tang, R. F., Itakura, J., Aikawa, T., Matsuda, K., Fujii, H., Korc, M., and Matsumoto, Y. (2001) Overexpression of lymphangiogenic growth factor VEGF-C in human pancreatic cancer. Pancreas 22, 285-292
52. Shestenko, O. P., Nikonov, S. D., and Mertvetsov, N. P. (2001) Angiogenin and Its Functions in Angiogenesis. Molecular Biology 35, 294-314
53. Wei, W., Jiao, Y., Postlethwaite, A., Stuart, J. M., Wang, Y., Sun, D., and Gu, W. (2013) Dual-specificity phosphatases 2: surprising positive effect at the molecular level and a potential biomarker of diseases. Genes and immunity 14, 1-6
54. Zhang, P., Guo, X., Li, J., Yu, S., Wang, L., Jiang, G., Yang, D., Wei, Z., Zhang, N., Liu, J., and Sun, Y. (2015) Immunoglobulin-like transcript 4 promotes tumor progression and metastasis and up-regulates VEGF-C expression via ERK signaling pathway in non-small cell lung cancer. Oncotarget 6, 13550-13563
55. Luangdilok, S., Box, C., Harrington, K., Rhŷs-Evans, P., and Eccles, S. (2011) MAPK and PI3K signalling differentially regulate angiogenic and lymphangiogenic cytokine secretion in squamous cell carcinoma of the head and neck. European Journal of Cancer 47, 520-529
56. Chang, F., Steelman, L. S., Lee, J. T., Shelton, J. G., Navolanic, P. M., Blalock, W. L., Franklin, R. A., and McCubrey, J. A. (2003) Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17, 1263-1293
57. Chen, X., Xie, Q., Cheng, X., Diao, X., Cheng, Y., Liu, J., Xie, W., Chen, Z., and Zhu, B. (2010) Role of interleukin-17 in lymphangiogenesis in non-small-cell lung cancer: Enhanced production of vascular endothelial growth factor C in non-small-cell lung carcinoma cells. Cancer science 101, 2384-2390
58. Cohen, P. T. (2002) Protein phosphatase 1--targeted in many directions. Journal of cell science 115, 241-256
59. Hamamura, K., Nishimura, A., Chen, A., Takigawa, S., Sudo, A., and Yokota, H. (2015) Salubrinal Acts as a Dusp2 Inhibitor and Suppresses Inflammation in Anti-Collagen Antibody-Induced Arthritis. Cellular signalling 27, 828-835
60. Jones, B. G., Thomas, L., Molloy, S. S., Thulin, C. D., Fry, M. D., Walsh, K. A., and Thomas, G. (1995) Intracellular trafficking of furin is modulated by the phosphorylation state of a casein kinase II site in its cytoplasmic tail. The EMBO Journal 14, 5869-5883
61. Seidah, N. G., and Prat, A. (2012) The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 11, 367-383
62. Wong, S. Y., and Hynes, R. O. (2006) Lymphatic or Hematogenous Dissemination: How Does a Metastatic Tumor Cell Decide? Cell cycle (Georgetown, Tex.) 5, 812-817
63. Zhang, Z., Helman, J. I., and Li, L. J. (2010) Lymphangiogenesis, lymphatic endothelial cells and lymphatic metastasis in head and neck cancer--a review of mechanisms. International journal of oral science 2, 5-14
64. Tuomela, J., Valta, M., Seppänen, J., Tarkkonen, K., Väänänen, H. K., and Härkönen, P. (2009) Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors. BMC Cancer 9, 1-12
65. de Cicco, R. L., Watson, J. C., Bassi, D. E., Litwin, S., and Klein-Szanto, A. J. (2004) Simultaneous Expression of Furin and Vascular Endothelial Growth Factor in Human Oral Tongue Squamous Cell Carcinoma Progression. American Association for Cancer Research 10, 4480-4488
66. Maertens, L., Erpicum, C., Detry, B., Blacher, S., Lenoir, B., Carnet, O., Péqueux, C., Cataldo, D., Lecomte, J., Paupert, J., and Noel, A. (2014) Bone Marrow-Derived Mesenchymal Stem Cells Drive Lymphangiogenesis. PloS one 9, e106976
67. Wang, C. A., and Tsai, S. J. (2015) The non-canonical role of vascular endothelial growth factor-C axis in cancer progression. Experimental biology and medicine (Maywood, N.J.) 240, 718-724
68. Bergers, G., and Hanahan, D. (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8, 592-603
69. Zhu, H., Yun, F., Shi, X., and Wang, D. (2015) VEGF-C inhibition reverses resistance of bladder cancer cells to cisplatin via upregulating maspin. Molecular medicine reports 12, 3163-3169
70. Li, D., Xie, K., Ding, G., Li, J., Chen, K., Li, H., Qian, J., Jiang, C., and Fang, J. (2014) Tumor resistance to anti-VEGF therapy through up-regulation of VEGF-C expression. Cancer Letters 346, 45-52