簡易檢索 / 詳目顯示

研究生: 曾武勇
Tseng, Wu-Yung
論文名稱: 台灣交通人流趨勢與新冠肺炎的傳播
Taiwan Traffic Flow Trends and the Spread of COVID-19
指導教授: 劉亞明
Liu, Ya-Ming
學位類別: 碩士
Master
系所名稱: 社會科學院 - 經濟學系
Department of Economics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 80
中文關鍵詞: 新冠肺炎交通人流趨勢交通流量空間分析
外文關鍵詞: COVID-19, Human Mobility, Traffic Flow, Spatial Analysis
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新冠肺炎( COVID-19 )疫情的爆發對於台灣社會與日常經濟活動帶來極大的衝擊,本文使用2022年3月1日至2023年3月21日的台灣交通資料,包含經過全台高速公路電子道路收費系統各站點之客車流量、鐵路、雙北地區之捷運等運量統計,透過交通人流資料來衡量及探討人流趨勢對於新冠肺炎的傳播的影響程度。方法上,先是運用區域型空間自相關指標 ( Local Indicator of Spatial Association,LISA ) 來分析疫情數據的空間群集現象及分布情形,並進一步以空間追蹤資料模型( Spatial Panel Data Model )探討交通人流與疫情傳播的相關性。
    本文在比較多種空間計量模型後,選定空間杜賓模型( Spatial Durbin Model ) 作為主要分析模型。研究結果顯示,本島除花東和離島以外的其他地區,客車流量與新冠肺炎確診數呈現正相關,且具有顯著的直接效果和間接效果;而針對雙北地區的分析顯示,鐵路與確診數呈現正相關,具有顯著的間接效果與總效果,在客車與捷運在交通人流上則可能因當地交通特性之故,有不同的影響模式。因此未來若遇到類似疫情時,對於不同縣市可就當地交通特性,採因地制宜的防疫相關交通政策。

    This study utilizes Taiwan's transportation data from March 1, 2022, to March 21, 2023, to examine the influence of human mobility trends on the spread of COVID-19. The data includes traffic flow of cars from electronic toll collection stations on highways, and railway and MRT traffic volumes in the Taipei metropolitan area. Using the Local Indicator of Spatial Association (LISA) to analyze spatial clustering of pandemic data and the Spatial Panel Data Model to examine correlations, the Spatial Durbin Model (SDM) was selected as the primary analytical model.
    Results show that in the main island regions, excluding Hualien, Taitung, and outlying islands, car flow is positively correlated with confirmed COVID-19 cases, exhibiting significant direct and indirect effects. In the Taipei metropolitan area, railway traffic correlates positively with confirmed cases. However, cars and MRTs display different impact patterns due to the unique traffic characteristics of the area. The findings suggest that locally tailored pandemic prevention policies should be implemented in future outbreaks, considering specific traffic characteristics of different regions.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 5 第三節 研究架構 6 第二章 文獻回顧 7 第一節 空間分析之模型應用 7 第二節 交通人流與新冠肺炎 8 第三節 其他影響新冠肺炎傳播的因素 9 第三章 資料說明與敘述統計 11 第一節 資料來源及變數處理 11 第二節 敘述統計 15 第四章 研究方法 19 第五章 實證結果 26 第一節 敘述性空間分析及地域型空間自我相關分析 26 第二節 空間迴歸估計結果 38 第三節 敏感度分析 50 第六章 結論 59 參考文獻 61 附錄 64

    林彥君(2017)。運用空間分析方法探討台灣缺血性中風後致死率之相關因子[碩士論文]。國立成功大學臨床藥學與藥物科技研究所。
    林政宏(2007)。台灣地區登革熱擴散之空間分析[碩士論文]。國立臺灣大學地理環境資源學研究所。
    胡立諄、賴進貴(2006)。臺灣女性癌症的空間分析。臺灣地理資訊學刊,(4),39-55。
    蒙麗君、胡國清、姚孟、周翠、周纯良、李杏莉(2022)。環境氣象因素對新型冠狀病毒肺炎傳播影響的研究進展。環境與職業醫學,39(3),348-352。
    Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93-115.
    Anselin, L., & Bera, A. K. (1998). Introduction to spatial econometrics (Vol. 237). Handbook of Applied Economic Statistics.
    Austin, W., Carattini, S., Gomez-Mahecha, J., & Pesko, M. F. (2023). The effects of contemporaneous air pollution on COVID-19 morbidity and mortality. Journal of Environmental Economics and Management, 119, 102815.
    Chen, K., Wang, M., Huang, C., Kinney, P. L., & Anastas, P. T. (2020). Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. The Lancet Planetary Health, 4(6), e210-e212.
    Chen, K. P., Yang, J. C., & Yang, T. T. (2022). JUE insight: Demand for transportation and spatial pattern of economic activity during the pandemic. Journal of Urban Economics, 127, 103426.
    Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J. a., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507-513.
    Cordes, J., & Castro, M. C. (2020). Spatial analysis of COVID-19 clusters and contextual factors in New York City. Spatial and Spatio-temporal Epidemiology, 34, 100355.
    Elhorst, J. P. (2014). Spatial econometrics from cross-sectional data to spatial panels. Berlin Heidelberg: Springer-Verlag.
    Glaeser, E. L., Gorback, C., & Redding, S. J. (2022). JUE Insight: How much does COVID-19 increase with mobility? Evidence from New York and four other U.S. cities. Journal of Urban Economics, 127, 103292.
    Guliyev, H. (2020). Determining the spatial effects of COVID-19 using the spatial panel data model. Spat Stat, 38, 100443.
    Harris, J. E. (2021). Critical Role of the Subways in the Initial Spread of SARS-CoV-2 in New York City. Front Public Health, 9, 754767.
    Jesri, N., Saghafipour, A., Koohpaei, A., Farzinnia, B., Jooshin, M. K., Abolkheirian, S., & Sarvi, M. (2021). Mapping and Spatial Pattern Analysis of COVID-19 in Central Iran Using the Local Indicators of Spatial Association (LISA). BMC Public Health, 21(1), 2227.
    Kuchler, T., Russel, D., & Stroebel, J. (2022). JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook. Journal of Urban Economics, 127, 103314.
    LeSage, J. P., & Pace, R. K. (2009). Introduction to spatial econometrics. CRC press.
    Mangrum, D., & Niekamp, P. (2022). JUE Insight: College student travel contributed to local COVID-19 spread. Journal of Urban Economics, 127, 103311.
    Meyerowitz, E. A., Richterman, A., Gandhi, R. T., & Sax, P. E. (2020). Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Annals of Internal Medicine, 174(1), 69-79.
    Shenoy, A., Sharma, B., Xu, G., Kapoor, R., Rho, H. A., & Sangha, K. (2022). God is in the rain: The impact of rainfall-induced early social distancing on COVID-19 outbreaks. Journal of Health Economics, 81, 102575.
    Tracey, M., Plemmons, A., & Belasen, A. (2022). Throwing caution to the wind: How hurricanes affect COVID-19 spread. Health Economics, 31(6), 1258-1265.
    Verheyen, C. A., & Bourouiba, L. (2022). Associations between indoor relative humidity and global COVID-19 outcomes. Journal of The Royal Society Interface, 19(196).
    Wan, L., & Wan, Q. (2022). High-speed railway and the intercity transmission of epidemics: Evidence from COVID-19 in China. Economic Modelling, 114, 105934.
    Wei, R., Zhang, Y., Gao, S., Brown, B. J., Hu, S., & Link, B. G. (2023). Health disparity in the spread of COVID-19: Evidence from social distancing, risk of interactions, and access to testing. Health & Place, 82, 103031.
    World Health Organization (2020). Estimating mortality from COVID-19.

    無法下載圖示 校內:2029-07-15公開
    校外:2029-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE