| 研究生: |
許瓅文 Hsu, Li-Wen |
|---|---|
| 論文名稱: |
兒童氣喘和微生物群落之間的關係 Relationship between asthma and microbial communities in asthmatic children |
| 指導教授: |
劉宗霖
Liu, Tsung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 氣喘 、細菌16S 、宏觀基因體學 、下世代定序 、Moraxella catarrhalis 、Leptotrichia spp. |
| 外文關鍵詞: | Asthma, Metagenomics, Bacterial 16S, NGS, Moraxella catarrhalis, Leptotrichia spp. |
| 相關次數: | 點閱:84 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣喘是個長期慢性的肺部疾病。當氣喘發作時,會造成不斷間歇的喘息和氣道發炎的一種綜合徵狀。目前此疾病已經影響超過全球3億的人口,所有年齡層的人們皆飽受氣喘疾病之苦,而在兒童時期的氣喘發作為最常見。造成氣喘的原因有很多種,過去許多研究指出早期生活環境與氣喘疾病有強烈相關的現象。本研究透過宏觀基因體學的方法,探討兒童氣喘與環境微生物群落的相關性。我們與成功大學醫學院小兒科醫療團隊王志堯醫師合作,採集了氣喘兒童不同部位的樣本。在鼻腔和喉嚨樣本中,分別採集氣喘發作當下(Attack)的樣本、氣喘回復後(Recovery)的樣本以及沒有氣喘疾病(Control)家人的樣本,對象為5~11歲的兒童。透過引子(primer)放大細菌16S rDNA的片段,再利用Illumina定序平台進行定序,將序列資料比對細菌16S資料庫來鑑定物種。另外為了探討是否環境因素會影響氣喘,我們比較同家族或氣喘個體樣本的相似性或差異性,利用各樣本的序列資料來進行樣本微生物群落的相似度分析。結果顯示氣喘發作與環境皆不是影響菌相的主要因素,所以必須比較同一人氣喘發作前後的菌相才可能找到與氣喘有相關性的微生物。在比較氣喘發作當下(Attack)與回復後(Recovery)的樣本後,我們發現鼻腔Attack樣本的細菌Moraxella catarrhalis比例相對較多,喉嚨Recovery樣本的細菌Leptotrichia spp.比例相對較多。我們推測在兒童身上,這兩種細菌物種可能與氣喘發作或發展相關。在未來研究發展上,探討氣喘微生物可以針對這兩個細菌作分析,作為預防及治療氣喘的可能方案。
Asthma is a chronic (long-term) lung disease involving the airways. It is a heterogeneous syndrome of intermittent wheeze and airway inflammation that affect people of all ages, but it mostly begins during childhood. Asthma is caused by many factors. Many studies have revealed a correlation between asthma and microbes, however, the specific microbes involved are not clear. In this project, we intend to identify specific microbes related to asthma using a metagenomics approach on the microbial communities in different body parts. We collaborated with Dr. Jiu-Yao Wang’s team, who collected asthma attack and asthma recovery samples from nasal cavity and throat of children between five and eleven years old. We amplified bacterial 16S rRNA sequences for Illumina sequencing. For species identification, we aligned the sequence data to the bacterial 16S database. In addition, we performed principle component analysis to compare microbial communities. We found that Moraxella catarrhalis was more abundant in nasal cavity of some attack samples compared to the recovery samples. In contrast, Leptotrichia spp. was more abundant in throat of recovery samples. The two microbes can be targets for further studies of asthma development.
1. Asher, N. Pearce, Global burden of asthma among children. Int. J. Tuberc. Lung Dis. 18, 1269–1278 (2014).
2. S. T. Holgate, Innate and adaptive immune responses in asthma. Nat. Med. 18, 673–683 (2012).
3. Brahman SS. The global burden of asthma. Chest 2006;130 (suppl 1): 4S–12S.
4. Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med 2006; 355: 2226–35.
5. D. Graham-Rowe, Lifestyle: When allergies go west. Nature 479, S2–S4 (2011).
6. Castro-Nallar, Eduardo, et al. "Integrating microbial and host transcriptomics to characterize asthma-associated microbial communities." BMC medical genomics 8.1 (2015): 50.
7. Nicholson JK, Holmes E, Kinross J, et al. Host–gut microbiota metabolic interactions. Science 2012; 336: 1262–67.
8. Hawrylowicz C, Ryanna K. Asthma and allergy: the early beginnings. Nat Med 2010; 16: 274–75
9. Arrieta M C, Stiemsma L T, Dimitriu P A, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma[J]. Science translational medicine, 2015, 7(307): 307ra152-307ra152.
10. M. C. Arrieta, L. T. Stiemsma, N. Amenyogbe, E. M. Brown, B. Finlay, The intestinal microbiome in early life: Health and disease. Front. Immunol. 5, 427 (2014).
11. Panzer A R, Lynch S V. Influence and effect of the human microbiome in allergy and asthma[J]. Current opinion in rheumatology, 2015, 27(4): 373-380.
12. Handelsman, J.; Rondon, M. R.; Brady, S. F.; Clardy, J.; Goodman, R. M. (1998) Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology 5 (10): R245. doi:10.1016/S1074-5521(98)90108-9.
13. Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities[J]. PLoS Comput Biol, 2005, 1(2): e24.
14. Sharon I, Banfield J F. Genomes from metagenomics[J]. Science, 2013, 342(6162): 1057-1058.
15. Thomas T, Gilbert J, Meyer F. Metagenomics-a guide from sampling to data analysis[J]. Microbial informatics and experimentation, 2012, 2(1): 3.
16. Hugenholtz P, Goebel B M, Pace N R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity[J]. Journal of bacteriology, 1998, 180(18): 4765-4774.
17. National Research Council. The new science of metagenomics: revealing the secrets of our microbial planet[M]. National Academies Press, 2007.
18. Kurokawa K, Itoh T, Kuwahara T, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes[J]. Dna Research, 2007, 14(4): 169-181.
19. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms[J]. Microbiology and molecular biology reviews, 2004, 68(4): 669-685.
20. Streit W R, Schmitz R A. Metagenomics–the key to the uncultured microbes[J]. Current opinion in microbiology, 2004, 7(5): 492-498.
21. Reis-Filho J S. Next-generation sequencing[J]. Breast Cancer Research, 2009, 11(3): S12.
22. Castro-Nallar E, Shen Y, Freishtat R J, et al. Integrating microbial and host transcriptomics to characterize asthma-associated microbial communities[J]. BMC medical genomics, 2015, 8(1): 50.
23. Vissing NH, Chawes BL, Bisgaard H. Increased risk of pneumonia and bronchiolitis after bacterial colonization of the airways as neonates. Am J Respir Crit Care Med. 2013;188:1246–52.
24. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5: e8578.
25. Case R J, Boucher Y, Dahllöf I, et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies[J]. Applied and environmental microbiology, 2007, 73(1): 278-288.
26. Tringe S G, Hugenholtz P. A renaissance for the pioneering 16S rRNA gene[J]. Current opinion in microbiology, 2008, 11(5): 442-446.
27. Coenye T, Vandamme P. Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes[J]. FEMS Microbiology Letters, 2003, 228(1): 45-49.
28. Klindworth, Anna, et al. "Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies." Nucleic acids research 41.1 (2012): e1-e1.
29. Reis-Filho, Jorge S. "Next-generation sequencing." Breast Cancer Research 11.3 (2009): S12.
30. Metzker, Michael L. "Sequencing technologies—the next generation." Nature reviews genetics 11.1 (2010): 31-46.
31. Davis, Matthew PA, et al. "Kraken: a set of tools for quality control and analysis of high-throughput sequence data." Methods 63.1 (2013): 41-49.
32. Magoč, Tanja, and Steven L. Salzberg. "FLASH: fast length adjustment of short reads to improve genome assemblies." Bioinformatics 27.21 (2011): 2957-2963.
33. Edgar, Robert C. "UPARSE: highly accurate OTU sequences from microbial amplicon reads." Nature methods 10.10 (2013): 996-998.
34. Morgulis, Aleksandr, et al. "Database indexing for production MegaBLAST searches." Bioinformatics 24.16 (2008): 1757-1764.
35. Maidak, Bonnie L., et al. "The ribosomal database project." Nucleic acids research 22.17 (1994): 3485-3487.
36. Wang, Qiong, et al. "Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy." Applied and environmental microbiology 73.16 (2007): 5261-5267.
37. Edgar, Robert. "SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences." bioRxiv (2016): 074161.
38. Rotmistrovsky, Kirill, Wonhee Jang, and Gregory D. Schuler. "A web server for performing electronic PCR." Nucleic acids research 32.suppl_2 (2004): W108-W112.
39. Kraft, Monica. "The role of bacterial infections in asthma." Clinics in chest medicine 21.2 (2000): 301-313.
40. Sirwar, Siddesh B., et al. "Moraxella catarrhalis: An emerging pathogen in bronchopulmonary infections." Annals of Tropical Medicine and Public Health6.1 (2013): 76.
41. de Steenhuijsen Piters, Wouter AA, Elisabeth AM Sanders, and Debby Bogaert. "The role of the local microbial ecosystem in respiratory health and disease." Phil. Trans. R. Soc. B 370.1675 (2015): 20140294.
42. de Vries, Stefan PW, et al. "Molecular aspects of Moraxella catarrhalis pathogenesis." Microbiology and molecular biology reviews 73.3 (2009): 389-406.
43. Eribe, Emenike RK, et al. "Genetic diversity of Leptotrichia and description of Leptotrichia goodfellowii sp. nov., Leptotrichia hofstadii sp. nov., Leptotrichia shahii sp. nov. and Leptotrichia wadei sp. nov." International journal of systematic and evolutionary microbiology 54.2 (2004): 583-592.
44. Zhang, Xiaoping, et al. "Western Environments/lifestyles Have Changed Upper Airway Microbiota In Chinese Immigrants." B48. ASTHMA: INSIGHTS FROM THE BENCH, GENETICS, AND EPIDEMIOLOGY. American Thoracic Society, 2016. A3701-A3701.
45. de Steenhuijsen Piters, W. A., et al. "Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients." The ISME journal 10.1 (2016): 97-108.
46. Chiu, Chih-Yung, et al. "Airway Microbial Diversity is Inversely Associated with Mite-Sensitized Rhinitis and Asthma in Early Childhood." Scientific Reports 7.1 (2017): 1820.
47. Depner, Martin, et al. "Bacterial microbiota of the upper respiratory tract and childhood asthma." Journal of Allergy and Clinical Immunology 139.3 (2017): 826-834.
48. Bosch, Astrid ATM, et al. "Maturation of the Infant Respiratory Microbiota, Environmental Drivers and Health Consequences: A Prospective Cohort Study." American Journal of Respiratory and Critical Care Medicine ja (2017).
49. Teo, Shu Mei, et al. "The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development." Cell host & microbe 17.5 (2015): 704-715.
50. Dang, Hien Thanh, et al. "Analysis of oropharyngeal microbiota between the patients with bronchial asthma and the non-asthmatic persons." Journal of Bacteriology and Virology 43.4 (2013): 270-278.